Level-p-complexity of Boolean functions using thinning, memoization, and polynomials
Uložené v:
| Názov: | Level-p-complexity of Boolean functions using thinning, memoization, and polynomials |
|---|---|
| Autori: | Jansson, Julia, 1999, Jansson, Patrik, 1972 |
| Zdroj: | Journal of Functional Programming. 33 |
| Popis: | This paper describes a purely functional library for computing level-p-complexity of Boolean functions and applies it to two-level iterated majority. Boolean functions are simply functions from n bits to one bit, and they can describe digital circuits, voting systems, etc. An example of a Boolean function is majority, which returns the value that has majority among the n input bits for odd n. The complexity of a Boolean function f measures the cost of evaluating it: how many bits of the input are needed to be certain about the result of f. There are many competing complexity measures, but we focus on level-p-complexity — a function of the probability p that a bit is 1. The level-p-complexity Dp(f)��(�) is the minimum expected cost when the input bits are independent and identically distributed with Bernoulli(p) distribution. We specify the problem as choosing the minimum expected cost of all possible decision trees — which directly translates to a clearly correct, but very inefficient implementation. The library uses thinning and memoization for efficiency and type classes for separation of concerns. The complexity is represented using (sets of) polynomials, and the order relation used for thinning is implemented using polynomial factorization and root counting. Finally, we compute the complexity for two-level iterated majority and improve on an earlier result by J. Jansson. |
| Popis súboru: | electronic |
| Prístupová URL adresa: | https://research.chalmers.se/publication/539327 https://research.chalmers.se/publication/538720 https://research.chalmers.se/publication/540785 https://research.chalmers.se/publication/540785/file/540785_Fulltext.pdf |
| Databáza: | SwePub |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://research.chalmers.se/publication/539327# Name: EDS - SwePub (s4221598) Category: fullText Text: View record in SwePub – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=14697653&ISBN=&volume=33&issue=&date=20230101&spage=&pages=&title=Journal of Functional Programming&atitle=Level-p-complexity%20of%20Boolean%20functions%20using%20thinning%2C%20memoization%2C%20and%20polynomials&aulast=Jansson%2C%20Julia&id=DOI:10.1017/S0956796823000102 Name: Full Text Finder Category: fullText Text: Full Text Finder Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif MouseOverText: Full Text Finder – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Jansson%20J Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsswe DbLabel: SwePub An: edsswe.oai.research.chalmers.se.0cfd3ddc.6fa9.4c6f.897c.c1d2d1badbca RelevancyScore: 984 AccessLevel: 6 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 983.779541015625 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Level-p-complexity of Boolean functions using thinning, memoization, and polynomials – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Jansson%2C+Julia%22">Jansson, Julia</searchLink>, 1999<br /><searchLink fieldCode="AR" term="%22Jansson%2C+Patrik%22">Jansson, Patrik</searchLink>, 1972 – Name: TitleSource Label: Source Group: Src Data: <i>Journal of Functional Programming</i>. 33 – Name: Abstract Label: Description Group: Ab Data: This paper describes a purely functional library for computing level-p-complexity of Boolean functions and applies it to two-level iterated majority. Boolean functions are simply functions from n bits to one bit, and they can describe digital circuits, voting systems, etc. An example of a Boolean function is majority, which returns the value that has majority among the n input bits for odd n. The complexity of a Boolean function f measures the cost of evaluating it: how many bits of the input are needed to be certain about the result of f. There are many competing complexity measures, but we focus on level-p-complexity — a function of the probability p that a bit is 1. The level-p-complexity Dp(f)��(�) is the minimum expected cost when the input bits are independent and identically distributed with Bernoulli(p) distribution. We specify the problem as choosing the minimum expected cost of all possible decision trees — which directly translates to a clearly correct, but very inefficient implementation. The library uses thinning and memoization for efficiency and type classes for separation of concerns. The complexity is represented using (sets of) polynomials, and the order relation used for thinning is implemented using polynomial factorization and root counting. Finally, we compute the complexity for two-level iterated majority and improve on an earlier result by J. Jansson. – Name: Format Label: File Description Group: SrcInfo Data: electronic – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/539327" linkWindow="_blank">https://research.chalmers.se/publication/539327</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/538720" linkWindow="_blank">https://research.chalmers.se/publication/538720</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/540785" linkWindow="_blank">https://research.chalmers.se/publication/540785</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/540785/file/540785_Fulltext.pdf" linkWindow="_blank">https://research.chalmers.se/publication/540785/file/540785_Fulltext.pdf</link> |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.0cfd3ddc.6fa9.4c6f.897c.c1d2d1badbca |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1017/S0956796823000102 Languages: – Text: English Titles: – TitleFull: Level-p-complexity of Boolean functions using thinning, memoization, and polynomials Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Jansson, Julia – PersonEntity: Name: NameFull: Jansson, Patrik IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2023 Identifiers: – Type: issn-print Value: 14697653 – Type: issn-print Value: 09567968 – Type: issn-locals Value: SWEPUB_FREE – Type: issn-locals Value: CTH_SWEPUB Numbering: – Type: volume Value: 33 Titles: – TitleFull: Journal of Functional Programming Type: main |
| ResultId | 1 |
Full Text Finder
Nájsť tento článok vo Web of Science