C12 aromatic triol-furoin and diol-furil from bio-based 5-(hydroxymethyl)furfural: enhanced selective synthesis, scale-up and mechanistic insight into cyclic catalysis

Uloženo v:
Podrobná bibliografie
Název: C12 aromatic triol-furoin and diol-furil from bio-based 5-(hydroxymethyl)furfural: enhanced selective synthesis, scale-up and mechanistic insight into cyclic catalysis
Autoři: Vu, Thi Tuyet Thuy, Liu, Shentan, Jonušis, Mantas, Jonušienė, Simona, Choi, Jinsik, Ismail, Mohamed, Rehnberg, Nicola, Hatti-Kaul, Rajni, Pyo, Sang Hyun
Přispěvatelé: Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Process and Life Science Engineering, Division of Biotechnology and Applied Microbiology, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för processteknik och tillämpad biovetenskap, Avdelningen för bioteknik och teknisk mikrobiologi, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Food and Bio, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Livsmedel och bioteknik, Originator
Zdroj: Reaction Chemistry and Engineering. 10(1):70-78
Témata: Natural Sciences, Chemical Sciences, Organic Chemistry, Naturvetenskap, Kemi, Organisk kemi
Popis: In this study, we investigate the valorization of 5-(hydroxymethyl)furfural (5-HMF), a versatile and pivotal renewable C6 platform chemical, into a C12 heteroaromatic triol, 5,5′-bis(hydroxymethyl)furoin (DHMF), and a C12 heteroaromatic diol, 5,5′-bis(hydroxymethyl)furil (BHMF). The carboligation of 5-HMF to DHMF is catalyzed by an N-heterocyclic carbene, 1,3,4-triphenyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene (TPT), generated in situ from its stable methoxy adduct, 5-methoxy-1,3,4-triphenyl-4,5-dihydro-1H-1,2,4-triazoline (TPA-OMe). This reaction achieves quantitative yield in dimethyl carbonate, a more environmentally friendly solvent. The resulting DHMF precipitate was readily purified via simple filtration and washing. Moreover, an enhanced selective oxidation was conducted at the secondary hydroxyl group of DHMF to generate the ketone group of BHMF in quantitative yield by using organo-catalysts, anionic exchanger, and NaOH. We proposed and subsequently validated a cyclic catalysis mechanism for the oxidation through the colorimetric detection of the by-product, H2O2, in the reaction. All synthetic processes to produce these C12 triol-furoin and diol-furil compounds were successfully demonstrated on a scale ranging from 20 to 400 grams. The feasibility of these processes was established with high yields achieved under moderate reaction conditions and ambient pressure, making them suitable for large-scale production. Consequently, these C12 multi-functional chemicals can find applications in the production of bio-based aromatic polymers such as polyesters, polyurethanes, and polycarbonates.
Přístupová URL adresa: https://doi.org/10.1039/d4re00212a
Databáze: SwePub
Popis
Abstrakt:In this study, we investigate the valorization of 5-(hydroxymethyl)furfural (5-HMF), a versatile and pivotal renewable C6 platform chemical, into a C12 heteroaromatic triol, 5,5′-bis(hydroxymethyl)furoin (DHMF), and a C12 heteroaromatic diol, 5,5′-bis(hydroxymethyl)furil (BHMF). The carboligation of 5-HMF to DHMF is catalyzed by an N-heterocyclic carbene, 1,3,4-triphenyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene (TPT), generated in situ from its stable methoxy adduct, 5-methoxy-1,3,4-triphenyl-4,5-dihydro-1H-1,2,4-triazoline (TPA-OMe). This reaction achieves quantitative yield in dimethyl carbonate, a more environmentally friendly solvent. The resulting DHMF precipitate was readily purified via simple filtration and washing. Moreover, an enhanced selective oxidation was conducted at the secondary hydroxyl group of DHMF to generate the ketone group of BHMF in quantitative yield by using organo-catalysts, anionic exchanger, and NaOH. We proposed and subsequently validated a cyclic catalysis mechanism for the oxidation through the colorimetric detection of the by-product, H2O2, in the reaction. All synthetic processes to produce these C12 triol-furoin and diol-furil compounds were successfully demonstrated on a scale ranging from 20 to 400 grams. The feasibility of these processes was established with high yields achieved under moderate reaction conditions and ambient pressure, making them suitable for large-scale production. Consequently, these C12 multi-functional chemicals can find applications in the production of bio-based aromatic polymers such as polyesters, polyurethanes, and polycarbonates.
ISSN:20589883
DOI:10.1039/d4re00212a