Integration of seepage modelling and electrical resistivity monitoring data for the Älvkarleby test embankment dam, Sweden

Saved in:
Bibliographic Details
Title: Integration of seepage modelling and electrical resistivity monitoring data for the Älvkarleby test embankment dam, Sweden
Authors: Norooz, Reyhaneh, Dahlin, Torleif, Toromanovic, Jasmina
Contributors: Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Biomedical Engineering, Division of Engineering Geology, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för biomedicinsk teknik, Avdelningen för teknisk geologi, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Water, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Vatten, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: The Energy Transition, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Energiomställningen, Originator
Source: Engineering Geology. 357
Subject Terms: Engineering and Technology, Civil Engineering, Geotechnical Engineering and Engineering Geology, Teknik, Samhällsbyggnadsteknik, Geoteknik och teknisk geologi
Description: The Älvkarleby test dam, constructed in Sweden, was designed with several intentionally created defects to serve as a controlled environment for evaluating various monitoring techniques. Among these, a unique three-dimensional (3D) Electrical Resistivity Tomography (ERT) setup was implemented. The ERT survey design, combined with full 3D calculation of the geometric factor and inversion constrained by the dam's internal zonation, enabled high-resolution mapping of spatial resistivity variations within the core and filter zones. Up to 14,000 ERT data points were collected daily, providing a detailed representation of the dam's internal conditions. Additional monitoring included pore pressure piezometers, Thomson weirs and turbidity sensors. In this study, a seepage model of the Älvkarleby test dam was developed to obtain comprehensive insights into its performance. A novel modelling approach was applied in which material properties for the core and fine filter were derived from a combination of laboratory testresults and interpretations of the 3D ERT data. Anomalous zones identified through ERT, together with the known intentional defects, were explicitly incorporated into the model geometry. For other dam zones than the core material properties were based solely on laboratory measurements. A trial-and-error calibration process was performed by comparing calculated pore pressures and leakage rates with the corresponding measurements until optimal agreement was achieved. Two additional seepage models were developed for comparison: one without any defects and another incorporating the intentional defects only. Results demonstrated that only the seepage model guided by ERT data achieved better agreement with measured values.
Access URL: https://doi.org/10.1016/j.enggeo.2025.108311
Database: SwePub
Description
Abstract:The Älvkarleby test dam, constructed in Sweden, was designed with several intentionally created defects to serve as a controlled environment for evaluating various monitoring techniques. Among these, a unique three-dimensional (3D) Electrical Resistivity Tomography (ERT) setup was implemented. The ERT survey design, combined with full 3D calculation of the geometric factor and inversion constrained by the dam's internal zonation, enabled high-resolution mapping of spatial resistivity variations within the core and filter zones. Up to 14,000 ERT data points were collected daily, providing a detailed representation of the dam's internal conditions. Additional monitoring included pore pressure piezometers, Thomson weirs and turbidity sensors. In this study, a seepage model of the Älvkarleby test dam was developed to obtain comprehensive insights into its performance. A novel modelling approach was applied in which material properties for the core and fine filter were derived from a combination of laboratory testresults and interpretations of the 3D ERT data. Anomalous zones identified through ERT, together with the known intentional defects, were explicitly incorporated into the model geometry. For other dam zones than the core material properties were based solely on laboratory measurements. A trial-and-error calibration process was performed by comparing calculated pore pressures and leakage rates with the corresponding measurements until optimal agreement was achieved. Two additional seepage models were developed for comparison: one without any defects and another incorporating the intentional defects only. Results demonstrated that only the seepage model guided by ERT data achieved better agreement with measured values.
ISSN:00137952
18726917
DOI:10.1016/j.enggeo.2025.108311