COUNTING NEGATIVE EIGENVALUES FOR THE MAGNETIC PAULI OPERATOR

Saved in:
Bibliographic Details
Title: COUNTING NEGATIVE EIGENVALUES FOR THE MAGNETIC PAULI OPERATOR
Authors: Fournais, SØren, Frank, Rupert L., Goffeng, Magnus, Kachmar, Ayman, Sundqvist, Mikael
Contributors: Lund University, Faculty of Science, Centre for Mathematical Sciences, Mathematics (Faculty of Engineering), Algebra, Analysis and Dynamical Systems, Lunds universitet, Naturvetenskapliga fakulteten, Matematikcentrum, Matematik LTH, Algebra, analys och dynamiska system, Originator
Source: Duke Mathematical Journal. 174(2):313-353
Subject Terms: Natural Sciences, Mathematical Sciences, Mathematical Analysis, Naturvetenskap, Matematik, Matematisk analys
Description: We study the Pauli operator in a 2-dimensional, connected domain with Neumann or Robin boundary condition. We prove a sharp lower bound on the number of negative eigenvalues reminiscent of the Aharonov-Casher formula. We apply this lower bound to obtain a new formula on the number of eigenvalues of the magnetic Neumann Laplacian in the semiclassical limit. Our approach relies on reduction to a boundary Dirac operator. We analyze this boundary operator in two different ways. The first approach uses Atiyah-Patodi-Singer (APS) index theory. The second approach relies on a conservation law for the Benjamin-Ono equation.
Access URL: https://doi.org/10.1215/00127094-2024-0029
Database: SwePub
Be the first to leave a comment!
You must be logged in first