COUNTING NEGATIVE EIGENVALUES FOR THE MAGNETIC PAULI OPERATOR
Uloženo v:
| Název: | COUNTING NEGATIVE EIGENVALUES FOR THE MAGNETIC PAULI OPERATOR |
|---|---|
| Autoři: | Fournais, SØren, Frank, Rupert L., Goffeng, Magnus, Kachmar, Ayman, Sundqvist, Mikael |
| Přispěvatelé: | Lund University, Faculty of Science, Centre for Mathematical Sciences, Mathematics (Faculty of Engineering), Algebra, Analysis and Dynamical Systems, Lunds universitet, Naturvetenskapliga fakulteten, Matematikcentrum, Matematik LTH, Algebra, analys och dynamiska system, Originator |
| Zdroj: | Duke Mathematical Journal. 174(2):313-353 |
| Témata: | Natural Sciences, Mathematical Sciences, Mathematical Analysis, Naturvetenskap, Matematik, Matematisk analys |
| Popis: | We study the Pauli operator in a 2-dimensional, connected domain with Neumann or Robin boundary condition. We prove a sharp lower bound on the number of negative eigenvalues reminiscent of the Aharonov-Casher formula. We apply this lower bound to obtain a new formula on the number of eigenvalues of the magnetic Neumann Laplacian in the semiclassical limit. Our approach relies on reduction to a boundary Dirac operator. We analyze this boundary operator in two different ways. The first approach uses Atiyah-Patodi-Singer (APS) index theory. The second approach relies on a conservation law for the Benjamin-Ono equation. |
| Přístupová URL adresa: | https://doi.org/10.1215/00127094-2024-0029 |
| Databáze: | SwePub |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://doi.org/10.1215/00127094-2024-0029# Name: EDS - SwePub (s4221598) Category: fullText Text: View record in SwePub – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Fournais%20S Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsswe DbLabel: SwePub An: edsswe.oai.portal.research.lu.se.publications.8918da05.4a1c.4b0c.9bf6.c2f78f67c81a RelevancyScore: 1115 AccessLevel: 6 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 1114.736328125 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: COUNTING NEGATIVE EIGENVALUES FOR THE MAGNETIC PAULI OPERATOR – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Fournais%2C+SØren%22">Fournais, SØren</searchLink><br /><searchLink fieldCode="AR" term="%22Frank%2C+Rupert+L%2E%22">Frank, Rupert L.</searchLink><br /><searchLink fieldCode="AR" term="%22Goffeng%2C+Magnus%22">Goffeng, Magnus</searchLink><br /><searchLink fieldCode="AR" term="%22Kachmar%2C+Ayman%22">Kachmar, Ayman</searchLink><br /><searchLink fieldCode="AR" term="%22Sundqvist%2C+Mikael%22">Sundqvist, Mikael</searchLink> – Name: Author Label: Contributors Group: Au Data: Lund University, Faculty of Science, Centre for Mathematical Sciences, Mathematics (Faculty of Engineering), Algebra, Analysis and Dynamical Systems, Lunds universitet, Naturvetenskapliga fakulteten, Matematikcentrum, Matematik LTH, Algebra, analys och dynamiska system, Originator – Name: TitleSource Label: Source Group: Src Data: <i>Duke Mathematical Journal</i>. 174(2):313-353 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Natural+Sciences%22">Natural Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Mathematical+Sciences%22">Mathematical Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Mathematical+Analysis%22">Mathematical Analysis</searchLink><br /><searchLink fieldCode="DE" term="%22Naturvetenskap%22">Naturvetenskap</searchLink><br /><searchLink fieldCode="DE" term="%22Matematik%22">Matematik</searchLink><br /><searchLink fieldCode="DE" term="%22Matematisk+analys%22">Matematisk analys</searchLink> – Name: Abstract Label: Description Group: Ab Data: We study the Pauli operator in a 2-dimensional, connected domain with Neumann or Robin boundary condition. We prove a sharp lower bound on the number of negative eigenvalues reminiscent of the Aharonov-Casher formula. We apply this lower bound to obtain a new formula on the number of eigenvalues of the magnetic Neumann Laplacian in the semiclassical limit. Our approach relies on reduction to a boundary Dirac operator. We analyze this boundary operator in two different ways. The first approach uses Atiyah-Patodi-Singer (APS) index theory. The second approach relies on a conservation law for the Benjamin-Ono equation. – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://doi.org/10.1215/00127094-2024-0029" linkWindow="_blank">https://doi.org/10.1215/00127094-2024-0029</link> |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.portal.research.lu.se.publications.8918da05.4a1c.4b0c.9bf6.c2f78f67c81a |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1215/00127094-2024-0029 Languages: – Text: English PhysicalDescription: Pagination: PageCount: 41 StartPage: 313 Subjects: – SubjectFull: Natural Sciences Type: general – SubjectFull: Mathematical Sciences Type: general – SubjectFull: Mathematical Analysis Type: general – SubjectFull: Naturvetenskap Type: general – SubjectFull: Matematik Type: general – SubjectFull: Matematisk analys Type: general Titles: – TitleFull: COUNTING NEGATIVE EIGENVALUES FOR THE MAGNETIC PAULI OPERATOR Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Fournais, SØren – PersonEntity: Name: NameFull: Frank, Rupert L. – PersonEntity: Name: NameFull: Goffeng, Magnus – PersonEntity: Name: NameFull: Kachmar, Ayman – PersonEntity: Name: NameFull: Sundqvist, Mikael – PersonEntity: Name: NameFull: Lund University, Faculty of Science, Centre for Mathematical Sciences, Mathematics (Faculty of Engineering), Algebra, Analysis and Dynamical Systems, Lunds universitet, Naturvetenskapliga fakulteten, Matematikcentrum, Matematik LTH, Algebra, analys och dynamiska system, Originator IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2025 Identifiers: – Type: issn-print Value: 00127094 – Type: issn-print Value: 15477398 – Type: issn-locals Value: SWEPUB_FREE – Type: issn-locals Value: LU_SWEPUB Numbering: – Type: volume Value: 174 – Type: issue Value: 2 Titles: – TitleFull: Duke Mathematical Journal Type: main |
| ResultId | 1 |
Nájsť tento článok vo Web of Science