Unsupervised Machine Learning Identifies Asthma Phenotypes in the Population‐Based West Sweden Asthma Study

Saved in:
Bibliographic Details
Title: Unsupervised Machine Learning Identifies Asthma Phenotypes in the Population‐Based West Sweden Asthma Study
Authors: Bashir, Muwada Bashir Awad, Lisik, Daniil, Ermis, Saliha Selin Ozuygur, Basna, Rani, Abohalaka, Reshed, Ercan, Selin, Backman, Helena, Pullerits, Teet, Mincheva, Roxana, Wennergren, Göran, Rådinger, Madeleine, Lötvall, Jan, Ekerljung, Linda, Kankaanranta, Hannu, Nwaru, Bright I.
Contributors: Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), EpiHealth: Epidemiology for Health, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), EpiHealth: Epidemiology for Health, Originator, Lund University, Faculty of Medicine, Department of Clinical Sciences, Malmö, Geriatrics, Lunds universitet, Medicinska fakulteten, Institutionen för kliniska vetenskaper, Malmö, Geriatrik, Originator
Source: Clinical and Experimental Allergy.
Subject Terms: Medical and Health Sciences, Clinical Medicine, Respiratory Medicine and Allergy, Medicin och hälsovetenskap, Klinisk medicin, Lungmedicin och allergi
Access URL: https://doi.org/10.1111/cea.70161
Database: SwePub
Description
ISSN:13652222
DOI:10.1111/cea.70161