Unsupervised Machine Learning Identifies Asthma Phenotypes in the Population‐Based West Sweden Asthma Study

Gespeichert in:
Bibliographische Detailangaben
Titel: Unsupervised Machine Learning Identifies Asthma Phenotypes in the Population‐Based West Sweden Asthma Study
Autoren: Bashir, Muwada Bashir Awad, Lisik, Daniil, Ermis, Saliha Selin Ozuygur, Basna, Rani, Abohalaka, Reshed, Ercan, Selin, Backman, Helena, Pullerits, Teet, Mincheva, Roxana, Wennergren, Göran, Rådinger, Madeleine, Lötvall, Jan, Ekerljung, Linda, Kankaanranta, Hannu, Nwaru, Bright I.
Weitere Verfasser: Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), EpiHealth: Epidemiology for Health, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), EpiHealth: Epidemiology for Health, Originator, Lund University, Faculty of Medicine, Department of Clinical Sciences, Malmö, Geriatrics, Lunds universitet, Medicinska fakulteten, Institutionen för kliniska vetenskaper, Malmö, Geriatrik, Originator
Quelle: Clinical and Experimental Allergy.
Schlagwörter: Medical and Health Sciences, Clinical Medicine, Respiratory Medicine and Allergy, Medicin och hälsovetenskap, Klinisk medicin, Lungmedicin och allergi
Zugangs-URL: https://doi.org/10.1111/cea.70161
Datenbank: SwePub
Beschreibung
ISSN:13652222
DOI:10.1111/cea.70161