RelabotulinumtoxinA, a Ready-to-Use Formulation Neuromodulator Manufactured with PEARLTM Technology to Maintain High Biological and Specific Activity
Saved in:
| Title: | RelabotulinumtoxinA, a Ready-to-Use Formulation Neuromodulator Manufactured with PEARLTM Technology to Maintain High Biological and Specific Activity |
|---|---|
| Authors: | Ståhl, Ulf, Lekholm, Emilia, Hamnevik, Emil, Fredriksson, Robert, Shridharani, Sachin M., Taghetchian, Keywan, Cohen, Joel L., Nestor, Mark S., Liljegren Sundberg, Åsa |
| Source: | Toxins. 17(10) |
| Subject Terms: | botulinum toxin type A, enzyme activity, onabotulinumtoxinA, biological activity, ready-to-use, relabotulinumtoxinA, specific activity |
| Description: | Most botulinum toxin A (BoNT-A) products for esthetic use require reconstitution before administration. Ready-to-use relabotulinumtoxinA is a liquid manufactured using Precipitation-free Extraction and Activity-preserving, Refined Liquid (PEARLTM) Technology from a proprietary C. botulinum type A1 strain. We examined the in vitro characteristics of relabotulinumtoxinA. The specific BoNT-A1 potency remained consistent throughout drug substance manufacturing (1.9 x 108-2.2 x 108 LD50 mouse potency units/mg of BoNT-A1, four fractions sampled). Using glabellar line (GL) on-label doses, relabotulinumtoxinA liquid product was compared with powder onabotulinumtoxinA using the following: BoNT-A1 amount based on ELISA; specific enzyme activity based on SNAP-25 cleavage by a fluorescence resonance energy transfer-based assay (BoTest®); biological activity (binding, internalization, and SNAP-25 cleavage over time) using a cell-based assay. RelabotulinumtoxinA contained more BoNT-A1 per on-label GL dose (0.27 ng) than onabotulinumtoxinA (0.18 ng), had higher enzyme activity (53 vs. 29 BoTest® units) per GL dose, and had higher specific activity per pg BoNT-A, with onabotulinumtoxinA displaying 81% of the specific activity of relabotulinumtoxinA. In vitro, relabotulinumtoxinA demonstrated higher biological activity and earlier onset of SNAP-25-cleavage than onabotulinumtoxinA. PEARLTM Technology thus produces high-quality BoNT-A1 with high specific enzyme and biological activities, which may explain the clinical performance of relabotulinumtoxinA in Phase 3 clinical trials examining treatment of GLs and/or LCLs. |
| File Description: | electronic |
| Access URL: | https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-571296 https://doi.org/10.3390/toxins17100501 |
| Database: | SwePub |
| Abstract: | Most botulinum toxin A (BoNT-A) products for esthetic use require reconstitution before administration. Ready-to-use relabotulinumtoxinA is a liquid manufactured using Precipitation-free Extraction and Activity-preserving, Refined Liquid (PEARLTM) Technology from a proprietary C. botulinum type A1 strain. We examined the in vitro characteristics of relabotulinumtoxinA. The specific BoNT-A1 potency remained consistent throughout drug substance manufacturing (1.9 x 108-2.2 x 108 LD50 mouse potency units/mg of BoNT-A1, four fractions sampled). Using glabellar line (GL) on-label doses, relabotulinumtoxinA liquid product was compared with powder onabotulinumtoxinA using the following: BoNT-A1 amount based on ELISA; specific enzyme activity based on SNAP-25 cleavage by a fluorescence resonance energy transfer-based assay (BoTest®); biological activity (binding, internalization, and SNAP-25 cleavage over time) using a cell-based assay. RelabotulinumtoxinA contained more BoNT-A1 per on-label GL dose (0.27 ng) than onabotulinumtoxinA (0.18 ng), had higher enzyme activity (53 vs. 29 BoTest® units) per GL dose, and had higher specific activity per pg BoNT-A, with onabotulinumtoxinA displaying 81% of the specific activity of relabotulinumtoxinA. In vitro, relabotulinumtoxinA demonstrated higher biological activity and earlier onset of SNAP-25-cleavage than onabotulinumtoxinA. PEARLTM Technology thus produces high-quality BoNT-A1 with high specific enzyme and biological activities, which may explain the clinical performance of relabotulinumtoxinA in Phase 3 clinical trials examining treatment of GLs and/or LCLs. |
|---|---|
| ISSN: | 20726651 |
| DOI: | 10.3390/toxins17100501 |
Full Text Finder
Nájsť tento článok vo Web of Science