Norm estimates for a broad class of modulation spaces, and continuity of Fourier type operators

Uloženo v:
Podrobná bibliografie
Název: Norm estimates for a broad class of modulation spaces, and continuity of Fourier type operators
Autoři: Toft, Joachim, 1964, Pfeuffer, Christine, Teofanov, Nenad
Zdroj: Journal of Functional Analysis. 290(1)
Témata: time-frequency analysis, modulation spaces, wiener amalgam spaces, quasi-banach spaces, pseudo-differential operators, toeplitz operators, Mathematics, Matematik
Popis: We consider a broad class of modulation spaces M(ω, B),parameterized with weight function ω and a normal quasiBanach function space B of order r0 ∈ (0, 1]. Then we provethat f ∈ M(ω, B), if and only if Vϕf belongs to the Wieneramalgam space Wr(ω, B), and∥f∥M(ω,B) ≍ ∥Vϕf · ω∥B ≍ ∥Vϕf∥Wr(ω,B), r ∈ [r0, ∞].We use the results to extend and improve continuity andlifting properties for pseudo-differential and Toeplitz operatorswith symbols in weighted M∞,r0 -spaces, r0 ≤ 1, when actingon M(ω, B)-spaces.
Popis souboru: electronic
Přístupová URL adresa: https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-141794
https://doi.org/10.1016/j.jfa.2025.111177
Databáze: SwePub
Popis
Abstrakt:We consider a broad class of modulation spaces M(ω, B),parameterized with weight function ω and a normal quasiBanach function space B of order r0 ∈ (0, 1]. Then we provethat f ∈ M(ω, B), if and only if Vϕf belongs to the Wieneramalgam space Wr(ω, B), and∥f∥M(ω,B) ≍ ∥Vϕf · ω∥B ≍ ∥Vϕf∥Wr(ω,B), r ∈ [r0, ∞].We use the results to extend and improve continuity andlifting properties for pseudo-differential and Toeplitz operatorswith symbols in weighted M∞,r0 -spaces, r0 ≤ 1, when actingon M(ω, B)-spaces.
ISSN:00221236
10960783
DOI:10.1016/j.jfa.2025.111177