Cooperative oxygen ion dynamics in Gd_(2)Ti_(2-y)Zr_(y)O_(7)
Uložené v:
| Názov: | Cooperative oxygen ion dynamics in Gd_(2)Ti_(2-y)Zr_(y)O_(7) |
|---|---|
| Autori: | Moreno, K. J., Mendoza-Suárez, G., Fuentes, A. F., Garcia Barriocanal, Javier, León Yebra, Carlos, Santamaría Sánchez-Barriga, Jacobo |
| Informácie o vydavateľovi: | American Physical Society 2023-06-20T10:54:15Z 2023-06-20T10:54:15Z 2005-04-22 |
| Druh dokumentu: | Electronic Resource |
| Abstrakt: | © 2005 The American Physical Society. Authors from CINVESTAV-IPN thank CONACYT for fi- nancial support. Authors from Universidad Complutense acknowledge financial support from MCYT. K.J.M. thanks CINVESTAV-IPN for financial support during her stay at Universidad Complutense. We report on dispersive conductivity measurements in the oxygen ion conductor Gd_(2)(Ti_(2−y)Zr_(y))O_(7). Increasing Zr content leads to higher concentration of oxygen vacancies and results in higher activation energies for long-range ion transport, whilst the microscopic energy barrier for single ion hopping remains constant. We find evidence that, besides oxygen binding energy, enhanced cooperativity in oxygen ion dynamics determines the activation energy for long-range diffusion. CONACYT MCYT CINVESTAV-IPN Depto. de Estructura de la Materia, Física Térmica y Electrónica Fac. de Ciencias Físicas TRUE pub |
| Témy: | 537, Electrical response, Germanate glasses, Local-structure, Relaxation, Conductivity, Conductors, Pyrochlore, Diffusion, Disorder, Fluorite., Electricidad, Electrónica (Física), 2202.03 Electricidad, journal article |
| URL: | |
| Dostupnosť: | Open access content. Open access content open access |
| Poznámka: | application/pdf 1098-0121 English |
| Other Numbers: | ESRCM oai:docta.ucm.es:20.500.14352/51423 1) A. V. Chadwick, Nature (London), 408, 925, (2000). 2) B. C. H. Steele, A. Heinzel, Nature (London), 414, 345,(2001). 3) P. Lacorre, F. Goutenoire, O. Bohnke, R. Retoux, Y. Laligant, Nature (London), 404, 856, (2000). 4) J. B. Goodenough, Nature (London), 404, 821, (2000). 5) P. K. Moon, H. L. Tuller, Solid State Ionics, 28-30, 470,(1988). 6) H. L. Tuller, Solid State Ionics, 52, 135, (1992). 7) J. Chen, J. Lian, L. M. Wang, R. C. Ewing, R. G. Wang, W. Pan, Phys. Rev. Lett., 88, 105901, (2002). 8) P. J. Wilde, C. R. A. Catlow, Solid State Ionics, 112, 173, (1998). 9) P. J. Wilde, C. R. A. Catlow, Solid State Ionics, 112, 185, (1998). 10) M. Pirzada, R. W. Grimes, L. Minervini, J. F. Maguire, K. E. Sickafus, Solid State Ionics, 140, 201, (2001). 11) C. Heremans, B. J. Wuensch, J. K. Stalick, E. Prince, J. Solid State Chem., 117, 108, (1995). 12) A. J. Burggraaf, T. Van Dijk, M. J. Verkerk, Solid State Ionics, 5, 519, (1981). 13) K. L. Ngai, C. León, Phys. Rev. B, 60, 9396, (1999). 14) A. K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric, London, 1983). 15) P. B. Macedo, C. T. Moynihan, R. Bose, Phys. Chem. Glasses, 13, 171 (1972). 16) R. Kohlrausch, Pogg Ann. Physik, 12, 393, (1847). 17) K. Funke, J. Non-Cryst. Solids, 172-174, 1215, (1994). 18) K. L. Ngai, K. Y. Tsang, Phys. Rev. E, 60, 4511, (1999). 19) K. L. Ngai, C. León, Phys. Rev. B, 66, 064308, (2002). 20) K. L. Ngai, C. León, J. Non-Cryst. Solids, 315, 214,(2003). 21) K. L. Ngai, J. N. Mundy, H. Jain, G. Balzerjollenbeck, O. Kanert, J. Non-Cryst. Solids, 95-96, 873, (1987). 22) W. C. Huang, H. Jain, J. Non-Cryst. Solids, 188, 254 (1995). 23) W. C. Huang, H. Jain, J. Non-Cryst. Solids, 212, 117, (1997). 1098-0121 10.1103/PhysRevB.71.132301 1413946482 |
| Prispievajúcí zdroj: | REPOSITORIO E-PRINTS UNIVERSIDAD COMPLU From OAIster®, provided by the OCLC Cooperative. |
| Prístupové číslo: | edsoai.on1413946482 |
| Databáza: | OAIster |
| Abstrakt: | © 2005 The American Physical Society. Authors from CINVESTAV-IPN thank CONACYT for fi- nancial support. Authors from Universidad Complutense acknowledge financial support from MCYT. K.J.M. thanks CINVESTAV-IPN for financial support during her stay at Universidad Complutense.<br />We report on dispersive conductivity measurements in the oxygen ion conductor Gd_(2)(Ti_(2−y)Zr_(y))O_(7). Increasing Zr content leads to higher concentration of oxygen vacancies and results in higher activation energies for long-range ion transport, whilst the microscopic energy barrier for single ion hopping remains constant. We find evidence that, besides oxygen binding energy, enhanced cooperativity in oxygen ion dynamics determines the activation energy for long-range diffusion.<br />CONACYT<br />MCYT<br />CINVESTAV-IPN<br />Depto. de Estructura de la Materia, Física Térmica y Electrónica<br />Fac. de Ciencias Físicas<br />TRUE<br />pub |
|---|
Nájsť tento článok vo Web of Science