Cooperative oxygen ion dynamics in Gd_(2)Ti_(2-y)Zr_(y)O_(7)

Uložené v:
Podrobná bibliografia
Názov: Cooperative oxygen ion dynamics in Gd_(2)Ti_(2-y)Zr_(y)O_(7)
Autori: Moreno, K. J., Mendoza-Suárez, G., Fuentes, A. F., Garcia Barriocanal, Javier, León Yebra, Carlos, Santamaría Sánchez-Barriga, Jacobo
Informácie o vydavateľovi: American Physical Society 2023-06-20T10:54:15Z 2023-06-20T10:54:15Z 2005-04-22
Druh dokumentu: Electronic Resource
Abstrakt: © 2005 The American Physical Society. Authors from CINVESTAV-IPN thank CONACYT for fi- nancial support. Authors from Universidad Complutense acknowledge financial support from MCYT. K.J.M. thanks CINVESTAV-IPN for financial support during her stay at Universidad Complutense.
We report on dispersive conductivity measurements in the oxygen ion conductor Gd_(2)(Ti_(2−y)Zr_(y))O_(7). Increasing Zr content leads to higher concentration of oxygen vacancies and results in higher activation energies for long-range ion transport, whilst the microscopic energy barrier for single ion hopping remains constant. We find evidence that, besides oxygen binding energy, enhanced cooperativity in oxygen ion dynamics determines the activation energy for long-range diffusion.
CONACYT
MCYT
CINVESTAV-IPN
Depto. de Estructura de la Materia, Física Térmica y Electrónica
Fac. de Ciencias Físicas
TRUE
pub
Témy: 537, Electrical response, Germanate glasses, Local-structure, Relaxation, Conductivity, Conductors, Pyrochlore, Diffusion, Disorder, Fluorite., Electricidad, Electrónica (Física), 2202.03 Electricidad, journal article
URL: https://hdl.handle.net/20.500.14352/51423
http://journals.aps.org/
Dostupnosť: Open access content. Open access content
open access
Poznámka: application/pdf
1098-0121
English
Other Numbers: ESRCM oai:docta.ucm.es:20.500.14352/51423
1) A. V. Chadwick, Nature (London), 408, 925, (2000). 2) B. C. H. Steele, A. Heinzel, Nature (London), 414, 345,(2001). 3) P. Lacorre, F. Goutenoire, O. Bohnke, R. Retoux, Y. Laligant, Nature (London), 404, 856, (2000). 4) J. B. Goodenough, Nature (London), 404, 821, (2000). 5) P. K. Moon, H. L. Tuller, Solid State Ionics, 28-30, 470,(1988). 6) H. L. Tuller, Solid State Ionics, 52, 135, (1992). 7) J. Chen, J. Lian, L. M. Wang, R. C. Ewing, R. G. Wang, W. Pan, Phys. Rev. Lett., 88, 105901, (2002). 8) P. J. Wilde, C. R. A. Catlow, Solid State Ionics, 112, 173, (1998). 9) P. J. Wilde, C. R. A. Catlow, Solid State Ionics, 112, 185, (1998). 10) M. Pirzada, R. W. Grimes, L. Minervini, J. F. Maguire, K. E. Sickafus, Solid State Ionics, 140, 201, (2001). 11) C. Heremans, B. J. Wuensch, J. K. Stalick, E. Prince, J. Solid State Chem., 117, 108, (1995). 12) A. J. Burggraaf, T. Van Dijk, M. J. Verkerk, Solid State Ionics, 5, 519, (1981). 13) K. L. Ngai, C. León, Phys. Rev. B, 60, 9396, (1999). 14) A. K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric, London, 1983). 15) P. B. Macedo, C. T. Moynihan, R. Bose, Phys. Chem. Glasses, 13, 171 (1972). 16) R. Kohlrausch, Pogg Ann. Physik, 12, 393, (1847). 17) K. Funke, J. Non-Cryst. Solids, 172-174, 1215, (1994). 18) K. L. Ngai, K. Y. Tsang, Phys. Rev. E, 60, 4511, (1999). 19) K. L. Ngai, C. León, Phys. Rev. B, 66, 064308, (2002). 20) K. L. Ngai, C. León, J. Non-Cryst. Solids, 315, 214,(2003). 21) K. L. Ngai, J. N. Mundy, H. Jain, G. Balzerjollenbeck, O. Kanert, J. Non-Cryst. Solids, 95-96, 873, (1987). 22) W. C. Huang, H. Jain, J. Non-Cryst. Solids, 188, 254 (1995). 23) W. C. Huang, H. Jain, J. Non-Cryst. Solids, 212, 117, (1997).
1098-0121
10.1103/PhysRevB.71.132301
1413946482
Prispievajúcí zdroj: REPOSITORIO E-PRINTS UNIVERSIDAD COMPLU
From OAIster®, provided by the OCLC Cooperative.
Prístupové číslo: edsoai.on1413946482
Databáza: OAIster
Popis
Abstrakt:© 2005 The American Physical Society. Authors from CINVESTAV-IPN thank CONACYT for fi- nancial support. Authors from Universidad Complutense acknowledge financial support from MCYT. K.J.M. thanks CINVESTAV-IPN for financial support during her stay at Universidad Complutense.<br />We report on dispersive conductivity measurements in the oxygen ion conductor Gd_(2)(Ti_(2−y)Zr_(y))O_(7). Increasing Zr content leads to higher concentration of oxygen vacancies and results in higher activation energies for long-range ion transport, whilst the microscopic energy barrier for single ion hopping remains constant. We find evidence that, besides oxygen binding energy, enhanced cooperativity in oxygen ion dynamics determines the activation energy for long-range diffusion.<br />CONACYT<br />MCYT<br />CINVESTAV-IPN<br />Depto. de Estructura de la Materia, Física Térmica y Electrónica<br />Fac. de Ciencias Físicas<br />TRUE<br />pub