Mineração de Dados Educacionais: Previsão de notas parciais utilizando classificação

Uložené v:
Podrobná bibliografia
Názov: Mineração de Dados Educacionais: Previsão de notas parciais utilizando classificação
Autori: Sousa, Marília Maria Bastos de Araújo Cavalcanti Feitosa Fava de
Thesis Advisors: fabiola@icomp.ufam.edu.br, Nakamura, Fabíola Guerra, Oliveira, David, Oliveira, Elaine, Carvalho, Leandro
Zdroj: Biblioteca Digital de Teses e Dissertações da UFAMUniversidade Federal do AmazonasUFAM.
Publication Status: publishedVersion
Informácie o vydavateľovi: Universidade Federal do Amazonas; Programa de Pós-graduação em Informática; UFAM; Brasil; Instituto de Computação, 2017.
Rok vydania: 2017
Zbierka: IBICT Brazilian ETDs
Original Material: Sousa, Marília Maria B. A. C. F de Sousa. Mineração de Dados Educacionais: Previsão de notas parciais utilizando classificação. 2017. 84 f. Dissertação (Mestrado em Informática) - Universidade Federal do Amazonas, Manaus.
Predmety: Mineração de Dados Educacionais, Ensino de Programação, Educational Data Mining, Prediction, Classification, Introductory Programming Teaching, CIENCIAS EXATAS E DA TERRA: CIENCIA DA COMPUTACAO, CIENCIAS EXATAS E DA TERRA: PROBABILIDADE E ESTATISTICA: ESTATISTICA: ANALISE DE DADOS
Popis: Submitted by Marília Sousa (mariliamariafeitoza@gmail.com) on 2018-07-26T12:25:36Z No. of bitstreams: 3 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertação Marília.pdf: 1106096 bytes, checksum: 5f4d3a102f590e08a72c6af9ef02d2e4 (MD5) folha de aprovação.pdf: 114224 bytes, checksum: 83acb0aa4ff29dd5cc1364b9b391ac77 (MD5)
Approved for entry into archive by Secretaria PPGI (secretariappgi@icomp.ufam.edu.br) on 2018-07-26T18:20:47Z (GMT) No. of bitstreams: 3 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertação Marília.pdf: 1106096 bytes, checksum: 5f4d3a102f590e08a72c6af9ef02d2e4 (MD5) folha de aprovação.pdf: 114224 bytes, checksum: 83acb0aa4ff29dd5cc1364b9b391ac77 (MD5)
Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-07-27T12:39:14Z (GMT) No. of bitstreams: 3 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertação Marília.pdf: 1106096 bytes, checksum: 5f4d3a102f590e08a72c6af9ef02d2e4 (MD5) folha de aprovação.pdf: 114224 bytes, checksum: 83acb0aa4ff29dd5cc1364b9b391ac77 (MD5)
Made available in DSpace on 2018-07-27T12:39:15Z (GMT). No. of bitstreams: 3 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertação Marília.pdf: 1106096 bytes, checksum: 5f4d3a102f590e08a72c6af9ef02d2e4 (MD5) folha de aprovação.pdf: 114224 bytes, checksum: 83acb0aa4ff29dd5cc1364b9b391ac77 (MD5) Previous issue date: 2017-09-29
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
The present work introduces the Educational Data Mining and an experiment involving prediction of partial exams. The experiment uses data of the Introduction to Computer Programming course of the Federal University of Amazonas and seeks to classify the students according to their grade, in a maximum of three classes: satisfactory, unsatisfactory and without concept (dropout students). As conclusion, there is a quantitative analysis with the predictive data.
O presente trabalho tem o intuito de apresentar a Mineração de Dados Educacionais e um experimento envolvendo previsão de provas parciais. O experimento é realizado através dos dados da disciplina de Introdução à Programação de Computadores da Universidade Federal do Amazonas e busca classificar os alunos de acordo com as notas obtidas, em no máximo três classes: satisfatório, insatisfatório e sem conceito (alunos evadidos). Como conclusão, tem-se uma análise quantitativa com os dados da previsão.
Original Identifier: oai:http://localhost:tede/6514
Druh dokumentu: masterThesis
Popis súboru: application/pdf
Jazyk: Portuguese
Relation: 1052477850274827528; 500
Dostupnosť: https://tede.ufam.edu.br/handle/tede/6514
Rights: info:eu-repo/semantics/openAccess
URL: http://creativecommons.org/licenses/by/4.0/
Prístupové číslo: edsndl.IBICT.oai.http...localhost.tede.6514
Databáza: Networked Digital Library of Theses & Dissertations
Popis
Abstrakt:Submitted by Marília Sousa (mariliamariafeitoza@gmail.com) on 2018-07-26T12:25:36Z No. of bitstreams: 3 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertação Marília.pdf: 1106096 bytes, checksum: 5f4d3a102f590e08a72c6af9ef02d2e4 (MD5) folha de aprovação.pdf: 114224 bytes, checksum: 83acb0aa4ff29dd5cc1364b9b391ac77 (MD5)<br />Approved for entry into archive by Secretaria PPGI (secretariappgi@icomp.ufam.edu.br) on 2018-07-26T18:20:47Z (GMT) No. of bitstreams: 3 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertação Marília.pdf: 1106096 bytes, checksum: 5f4d3a102f590e08a72c6af9ef02d2e4 (MD5) folha de aprovação.pdf: 114224 bytes, checksum: 83acb0aa4ff29dd5cc1364b9b391ac77 (MD5)<br />Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-07-27T12:39:14Z (GMT) No. of bitstreams: 3 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertação Marília.pdf: 1106096 bytes, checksum: 5f4d3a102f590e08a72c6af9ef02d2e4 (MD5) folha de aprovação.pdf: 114224 bytes, checksum: 83acb0aa4ff29dd5cc1364b9b391ac77 (MD5)<br />Made available in DSpace on 2018-07-27T12:39:15Z (GMT). No. of bitstreams: 3 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertação Marília.pdf: 1106096 bytes, checksum: 5f4d3a102f590e08a72c6af9ef02d2e4 (MD5) folha de aprovação.pdf: 114224 bytes, checksum: 83acb0aa4ff29dd5cc1364b9b391ac77 (MD5) Previous issue date: 2017-09-29<br />CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior<br />The present work introduces the Educational Data Mining and an experiment involving prediction of partial exams. The experiment uses data of the Introduction to Computer Programming course of the Federal University of Amazonas and seeks to classify the students according to their grade, in a maximum of three classes: satisfactory, unsatisfactory and without concept (dropout students). As conclusion, there is a quantitative analysis with the predictive data.<br />O presente trabalho tem o intuito de apresentar a Mineração de Dados Educacionais e um experimento envolvendo previsão de provas parciais. O experimento é realizado através dos dados da disciplina de Introdução à Programação de Computadores da Universidade Federal do Amazonas e busca classificar os alunos de acordo com as notas obtidas, em no máximo três classes: satisfatório, insatisfatório e sem conceito (alunos evadidos). Como conclusão, tem-se uma análise quantitativa com os dados da previsão.