A novel loss function for neural network models exploring stock realized volatility using Wasserstein Distance

Uložené v:
Podrobná bibliografia
Názov: A novel loss function for neural network models exploring stock realized volatility using Wasserstein Distance
Autori: Gobato Souto, Hugo, Moradi, Amir
Prispievatelia: Academie International School of Business, HAN University of Applied Sciences, International Business, HAN University of Applied Sciences@@@Academie International School of Business@@@Lectoraten
Zdroj: Decision Analytics Journal.
Informácie o vydavateľovi: HAN University of Applied Sciences, 2024.
Rok vydania: 2024
Predmety: Topological data analysis, Neural Networks, Neural basis expansion analysis, Exogenous variables, Temporal fusion transformer, Realized volatility forecasting
Popis: This study proposes a novel loss function for neural network models that explores the topological structure of stock realized volatility (RV) data by adding Wasserstein Distance (WD). The study shows that the proposed loss statistically significantly improves the forecast accuracy of neural network models for magnitude-dependent error measures, for example, Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), but not necessarily for relative error measures, such as Quasi-likelihood (QLIKE). Additionally, this research provides user-friendly open-source code for researchers and practitioners to implement the proposed loss function efficiently and quickly.
Druh dokumentu: article
Prístupová URL adresa: https://surfsharekit.nl/public/594f25ee-7b3a-4132-94df-9d5dbd848ada
https://www.sciencedirect.com/science/article/pii/S2772662223002096
Dostupnosť: http://www.hbo-kennisbank.nl/en/page/hborecord.view/?uploadId=sharekit_han:oai:surfsharekit.nl:594f25ee-7b3a-4132-94df-9d5dbd848ada
Prístupové číslo: edshbo.sharekit.han.oai.surfsharekit.nl.594f25ee.7b3a.4132.94df.9d5dbd848ada
Databáza: HBO Kennisbank
Buďte prvý, kto okomentuje tento záznam!
Najprv sa musíte prihlásiť.