A novel loss function for neural network models exploring stock realized volatility using Wasserstein Distance

Uloženo v:
Podrobná bibliografie
Název: A novel loss function for neural network models exploring stock realized volatility using Wasserstein Distance
Autoři: Gobato Souto, Hugo, Moradi, Amir
Přispěvatelé: Academie International School of Business, HAN University of Applied Sciences, International Business, HAN University of Applied Sciences@@@Academie International School of Business@@@Lectoraten
Zdroj: Decision Analytics Journal.
Informace o vydavateli: HAN University of Applied Sciences, 2024.
Rok vydání: 2024
Témata: Topological data analysis, Neural Networks, Neural basis expansion analysis, Exogenous variables, Temporal fusion transformer, Realized volatility forecasting
Popis: This study proposes a novel loss function for neural network models that explores the topological structure of stock realized volatility (RV) data by adding Wasserstein Distance (WD). The study shows that the proposed loss statistically significantly improves the forecast accuracy of neural network models for magnitude-dependent error measures, for example, Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), but not necessarily for relative error measures, such as Quasi-likelihood (QLIKE). Additionally, this research provides user-friendly open-source code for researchers and practitioners to implement the proposed loss function efficiently and quickly.
Druh dokumentu: article
Přístupová URL adresa: https://surfsharekit.nl/public/594f25ee-7b3a-4132-94df-9d5dbd848ada
https://www.sciencedirect.com/science/article/pii/S2772662223002096
Dostupnost: http://www.hbo-kennisbank.nl/en/page/hborecord.view/?uploadId=sharekit_han:oai:surfsharekit.nl:594f25ee-7b3a-4132-94df-9d5dbd848ada
Přístupové číslo: edshbo.sharekit.han.oai.surfsharekit.nl.594f25ee.7b3a.4132.94df.9d5dbd848ada
Databáze: HBO Kennisbank
Popis
Abstrakt:This study proposes a novel loss function for neural network models that explores the topological structure of stock realized volatility (RV) data by adding Wasserstein Distance (WD). The study shows that the proposed loss statistically significantly improves the forecast accuracy of neural network models for magnitude-dependent error measures, for example, Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), but not necessarily for relative error measures, such as Quasi-likelihood (QLIKE). Additionally, this research provides user-friendly open-source code for researchers and practitioners to implement the proposed loss function efficiently and quickly.