Bibliographische Detailangaben
| Titel: |
ON \(A^{\mathcal{I^{K}}}\)–SUMMABILITY |
| Autoren: |
Chiranjib Choudhury, Shyamal Debnath |
| Quelle: |
Ural Mathematical Journal, Vol 8, Iss 1 (2022) |
| Verlagsinformationen: |
Ural Branch of the Russian Academy of Sciences and Ural Federal University named after the first President of Russia B.N.Yeltsin, Krasovskii Institute of Mathematics and Mechanics, 2022. |
| Publikationsjahr: |
2022 |
| Bestand: |
LCC:Mathematics |
| Schlagwörter: |
ideal, filter, \(\mathcal{i}\)-convergence, \(\mathcal{i^{k}}\)-convergence, \(a^{\mathcal{i}}\)-summability, \(a^{\mathcal{i^{k}}}\)-summability., Mathematics, QA1-939 |
| Beschreibung: |
In this paper, we introduce and investigate the concept of \(A^{\mathcal{I^{K}}}\)-summability as an extension of \(A^{\mathcal{I^{*}}}\)-summability which was recently (2021) introduced by O.H.H.~Edely, where \(A=(a_{nk})_{n,k=1}^{\infty}\) is a non-negative regular matrix and \(\mathcal{I}\) and \(\mathcal{K}\) represent two non-trivial admissible ideals in \(\mathbb{N}\). We study some of its fundamental properties as well as a few inclusion relationships with some other known summability methods. We prove that \(A^{\mathcal{K}}\)-summability always implies \(A^{\mathcal{I^{K}}}\)-summability whereas \(A^{\mathcal{I}}\)-summability not necessarily implies \(A^{\mathcal{I^{K}}}\)-summability. Finally, we give a condition namely \(AP(\mathcal{I},\mathcal{K})\) (which is a natural generalization of the condition \(AP\)) under which \(A^{\mathcal{I}}\)-summability implies \(A^{\mathcal{I^{K}}}\)-summability. |
| Publikationsart: |
article |
| Dateibeschreibung: |
electronic resource |
| Sprache: |
English |
| ISSN: |
2414-3952 |
| Relation: |
https://umjuran.ru/index.php/umj/article/view/410; https://doaj.org/toc/2414-3952 |
| DOI: |
10.15826/umj.2022.1.002 |
| Zugangs-URL: |
https://doaj.org/article/9568441849ed4fbdbf58c79c6d42164e |
| Dokumentencode: |
edsdoj.9568441849ed4fbdbf58c79c6d42164e |
| Datenbank: |
Directory of Open Access Journals |