Incorporating PET-MIL-101(Fe) within cellulose acetate membrane for thin film microextraction of neonicotinoid insecticides in water

Uloženo v:
Podrobná bibliografie
Název: Incorporating PET-MIL-101(Fe) within cellulose acetate membrane for thin film microextraction of neonicotinoid insecticides in water
Autoři: Silindokuhle Jakavula, Neliswa Mpayipheli, Azile Nqombolo, Jianwei Ren, Philiswa Nosizo Nomngongo
Zdroj: Scientific Reports, Vol 15, Iss 1, Pp 1-16 (2025)
Informace o vydavateli: Nature Portfolio, 2025.
Rok vydání: 2025
Sbírka: LCC:Medicine
LCC:Science
Témata: Waste utilization, Recycled PET, PET-MIL-101(Fe), Polymer membranes, Neonicotinoid insecticides, Direct immersion-thin film microextraction method, Medicine, Science
Popis: Abstract Herein, cellulose acetate membrane modified with polyethylene terephthalate derived MIL-101(Fe) (PET-MIL-101(Fe)) was used as an extraction phase for the direct immersion-thin film microextraction method (DI-TFME) of neonicotinoid insecticides in water samples. The quantitative analysis of clothianidin, imidacloprid, thiacloprid and thiamethoxam was carried out using high-pressure liquid chromatography (HPLC-DAD). The morphological and structural characteristics of the materials were studied using transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), and energy dispersive X-ray spectrometry (EDX). Under optimum conditions, acceptable analytical performance for the developed DI-TFME/HPLC-DAD method was attained. The linearity of the method ranged from 0.04 to 500 µg/L with R2 ranging from 0.9981 to 0.9989. The detection limits, quantification limits and relative standard deviation (%RSD) of the DI-TFME/HPLC-DAD method were in the range of 0.013–0.016 µg/L, 0.043–0.053 µg/L and 1.2–3.9%, respectively. The method was applied in the analysis of real water samples, and the spiking recoveries of the target analytes were 95.6–102%, 91.2–98.6% and 79.2‒98.7% for river water, effluent and influent samples, respectively, with %RSDs ranging from 1.8 to 4.8%. These findings demonstrated that the developed DI-TFME/HPLC-DAD method had high precision, accuracy, sensitivity and enrichment factor (73–88). The DI-TFME/HPLC-DAD method proved sustainable for the simultaneous quantification of trace neonicotinoid insecticides in real samples.
Druh dokumentu: article
Popis souboru: electronic resource
Jazyk: English
ISSN: 2045-2322
Relation: https://doaj.org/toc/2045-2322
DOI: 10.1038/s41598-025-18447-3
Přístupová URL adresa: https://doaj.org/article/ec93cce08a254805a8f51b8ee88e8b51
Přístupové číslo: edsdoj.93cce08a254805a8f51b8ee88e8b51
Databáze: Directory of Open Access Journals
Popis
Abstrakt:Abstract Herein, cellulose acetate membrane modified with polyethylene terephthalate derived MIL-101(Fe) (PET-MIL-101(Fe)) was used as an extraction phase for the direct immersion-thin film microextraction method (DI-TFME) of neonicotinoid insecticides in water samples. The quantitative analysis of clothianidin, imidacloprid, thiacloprid and thiamethoxam was carried out using high-pressure liquid chromatography (HPLC-DAD). The morphological and structural characteristics of the materials were studied using transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), and energy dispersive X-ray spectrometry (EDX). Under optimum conditions, acceptable analytical performance for the developed DI-TFME/HPLC-DAD method was attained. The linearity of the method ranged from 0.04 to 500 µg/L with R2 ranging from 0.9981 to 0.9989. The detection limits, quantification limits and relative standard deviation (%RSD) of the DI-TFME/HPLC-DAD method were in the range of 0.013–0.016 µg/L, 0.043–0.053 µg/L and 1.2–3.9%, respectively. The method was applied in the analysis of real water samples, and the spiking recoveries of the target analytes were 95.6–102%, 91.2–98.6% and 79.2‒98.7% for river water, effluent and influent samples, respectively, with %RSDs ranging from 1.8 to 4.8%. These findings demonstrated that the developed DI-TFME/HPLC-DAD method had high precision, accuracy, sensitivity and enrichment factor (73–88). The DI-TFME/HPLC-DAD method proved sustainable for the simultaneous quantification of trace neonicotinoid insecticides in real samples.
ISSN:20452322
DOI:10.1038/s41598-025-18447-3