Five classes of binomial/harmonic series of convergence rate $ -1/4 $

Gespeichert in:
Bibliographische Detailangaben
Titel: Five classes of binomial/harmonic series of convergence rate $ -1/4 $
Autoren: Chunli Li, Wenchang Chu
Quelle: AIMS Mathematics, Vol 10, Iss 7, Pp 16264-16290 (2025)
Verlagsinformationen: AIMS Press, 2025.
Publikationsjahr: 2025
Bestand: LCC:Mathematics
Schlagwörter: hypergeometric series, gamma function, harmonic number, riemann zeta function, Mathematics, QA1-939
Beschreibung: By applying the 'coefficient extraction method' to the symmetric transformation of hypergeometric series due to Chu and Zhang (2014), we examine systematically five classes of infinite series of convergence rate '$ -1/4 $' containing binomial coefficients and harmonic numbers. Numerous closed formulae in terms of universal constants (such as $ \pi $, $ \ln2 $, and the Riemann zeta values) are established.
Publikationsart: article
Dateibeschreibung: electronic resource
Sprache: English
ISSN: 2473-6988
Relation: https://doaj.org/toc/2473-6988
DOI: 10.3934/math.2025727
Zugangs-URL: https://doaj.org/article/82a4162f05204e46839bbbc822757da9
Dokumentencode: edsdoj.82a4162f05204e46839bbbc822757da9
Datenbank: Directory of Open Access Journals
Beschreibung
Abstract:By applying the 'coefficient extraction method' to the symmetric transformation of hypergeometric series due to Chu and Zhang (2014), we examine systematically five classes of infinite series of convergence rate '$ -1/4 $' containing binomial coefficients and harmonic numbers. Numerous closed formulae in terms of universal constants (such as $ \pi $, $ \ln2 $, and the Riemann zeta values) are established.
ISSN:24736988
DOI:10.3934/math.2025727