Метод интеграции больших языковых моделей в алгоритмы фокусированного мониторинга открытых данных социальных медиа

Uloženo v:
Podrobná bibliografie
Název: Метод интеграции больших языковых моделей в алгоритмы фокусированного мониторинга открытых данных социальных медиа
Autoři: Andrey Fedorov, Igor Datyev, Ivan Vishnyakov
Zdroj: Информатика и автоматизация, Vol 24, Iss 6, Pp 1623-1648 (2025)
Informace o vydavateli: Russian Academy of Sciences, St. Petersburg Federal Research Center, 2025.
Rok vydání: 2025
Sbírka: LCC:Electronic computers. Computer science
Témata: социальные медиа, публикации, обобщение, большие языковые модели, генерация дополненная поиском, интеллектуальные агенты, гибридный метод, Electronic computers. Computer science, QA75.5-76.95
Popis: Актуальность исследования определяется важностью и сложностью выполнения оперативных обобщений постоянно возрастающего массива пользовательских сообщений в социальных сетях. Предлагается уменьшить сложность решаемой задачи за счет использования роботизированных алгоритмов и их автоматизированной интеллектуальной фокусировки на целевые платформы, доступность данных и их объемы. Рассматривается способность больших языковых моделей (LLMs) генерировать высококачественные, связные и контекстно-зависимые аннотации (рефераты), подходящие для динамической природы неструктурированных, «зашумленных» данных социальных сетей. Представлены особенности технологии RAG LLM при реферировании публикаций социальных сетей. Основным недостатком языковых моделей является нестабильность и сложность прослеживания результатов для подтверждения фактической точности. Авторами предложен гибридный метод для обобщения сообщений в социальных сетях за определенный период времени. Метод заключается в комплексном и вариативном сочетании классических способов извлечений данных из их хранилищ, а также реферативных и генеративных возможностей больших языковых моделей. Большие языковые модели использованы для векторизации анализируемых данных. Применение алгоритмов кластеризации к полученным векторным представлениям позволило повысить стабильность и качество результатов. В рамках технологии RAG возможности больших языковых моделей расширены средствами интеллектуального поиска в используемой для хранения исходных данных базе MongoDB. В работе представлены три конвейера, каждый из которых является вариантом реализации метода и обладает преимуществами и недостатками в различных условиях применения. Приведены используемые для оценки конвейеров метрики и произведен сравнительный анализ. В целом, метод позволяет уменьшить конфабуляции большой языковой модели и получать обобщения публикаций за разные временные периоды в режиме реального времени. Предложенный метод применяется на практике в разработанной авторами системе мониторинга открытых данных социальных медиа.
Druh dokumentu: article
Popis souboru: electronic resource
Jazyk: English
Russian
ISSN: 2713-3192
2713-3206
Relation: https://ia.spcras.ru/index.php/sp/article/view/17252; https://doaj.org/toc/2713-3192; https://doaj.org/toc/2713-3206
DOI: 10.15622/ia.24.6.4
Přístupová URL adresa: https://doaj.org/article/4db067acbeda4c16bcca81fa8a2a016c
Přístupové číslo: edsdoj.4db067acbeda4c16bcca81fa8a2a016c
Databáze: Directory of Open Access Journals
Popis
Abstrakt:Актуальность исследования определяется важностью и сложностью выполнения оперативных обобщений постоянно возрастающего массива пользовательских сообщений в социальных сетях. Предлагается уменьшить сложность решаемой задачи за счет использования роботизированных алгоритмов и их автоматизированной интеллектуальной фокусировки на целевые платформы, доступность данных и их объемы. Рассматривается способность больших языковых моделей (LLMs) генерировать высококачественные, связные и контекстно-зависимые аннотации (рефераты), подходящие для динамической природы неструктурированных, «зашумленных» данных социальных сетей. Представлены особенности технологии RAG LLM при реферировании публикаций социальных сетей. Основным недостатком языковых моделей является нестабильность и сложность прослеживания результатов для подтверждения фактической точности. Авторами предложен гибридный метод для обобщения сообщений в социальных сетях за определенный период времени. Метод заключается в комплексном и вариативном сочетании классических способов извлечений данных из их хранилищ, а также реферативных и генеративных возможностей больших языковых моделей. Большие языковые модели использованы для векторизации анализируемых данных. Применение алгоритмов кластеризации к полученным векторным представлениям позволило повысить стабильность и качество результатов. В рамках технологии RAG возможности больших языковых моделей расширены средствами интеллектуального поиска в используемой для хранения исходных данных базе MongoDB. В работе представлены три конвейера, каждый из которых является вариантом реализации метода и обладает преимуществами и недостатками в различных условиях применения. Приведены используемые для оценки конвейеров метрики и произведен сравнительный анализ. В целом, метод позволяет уменьшить конфабуляции большой языковой модели и получать обобщения публикаций за разные временные периоды в режиме реального времени. Предложенный метод применяется на практике в разработанной авторами системе мониторинга открытых данных социальных медиа.
ISSN:27133192
27133206
DOI:10.15622/ia.24.6.4