Calculation of the volume of simplex in barycentric coordinates in a multidimensional Euclidean space

Uloženo v:
Podrobná bibliografie
Název: Calculation of the volume of simplex in barycentric coordinates in a multidimensional Euclidean space
Autoři: M. A. Stepanova
Zdroj: Научно-технический вестник информационных технологий, механики и оптики, Vol 25, Iss 5, Pp 996-998 (2025)
Informace o vydavateli: ITMO University, 2025.
Rok vydání: 2025
Sbírka: LCC:Information technology
Témata: барицентрическая система координат, арицентрическая матрица, базисный симплекс, объем симплекса, Information technology, T58.5-58.64
Popis: The paper describes three ways of calculating the k-dimensional volume of the k-dimensional simplex in the n-dimensional Euclidean space (n ≥ k) in the canonical barycentric coordinate system. The first method is to calculate for the n-dimensional simplex using the determinant of the barycentric matrix, the columns of which are the barycentric coordinates of the simplex vertices. The second method is to calculate the volume for k-dimensional simplex using the Cayley–Menger determinant through the lengths of the simplex edges which can be found from the barycentric coordinates of the vertices. The third method is to compute using a Gram determinant for a system of vectors constructed from the vertices of a given simplex in a (n + 1)-dimensional Euclidean space.
Druh dokumentu: article
Popis souboru: electronic resource
Jazyk: English
Russian
ISSN: 2226-1494
2500-0373
Relation: https://ntv.elpub.ru/jour/article/view/529; https://doaj.org/toc/2226-1494; https://doaj.org/toc/2500-0373
DOI: 10.17586/2226-1494-2025-25-5-996-998
Přístupová URL adresa: https://doaj.org/article/ce3f5853bf6a4bfc9ac1b07444b4d88b
Přístupové číslo: edsdoj.3f5853bf6a4bfc9ac1b07444b4d88b
Databáze: Directory of Open Access Journals
Popis
Abstrakt:The paper describes three ways of calculating the k-dimensional volume of the k-dimensional simplex in the n-dimensional Euclidean space (n ≥ k) in the canonical barycentric coordinate system. The first method is to calculate for the n-dimensional simplex using the determinant of the barycentric matrix, the columns of which are the barycentric coordinates of the simplex vertices. The second method is to calculate the volume for k-dimensional simplex using the Cayley–Menger determinant through the lengths of the simplex edges which can be found from the barycentric coordinates of the vertices. The third method is to compute using a Gram determinant for a system of vectors constructed from the vertices of a given simplex in a (n + 1)-dimensional Euclidean space.
ISSN:22261494
25000373
DOI:10.17586/2226-1494-2025-25-5-996-998