Calculation of the volume of simplex in barycentric coordinates in a multidimensional Euclidean space
Uloženo v:
| Název: | Calculation of the volume of simplex in barycentric coordinates in a multidimensional Euclidean space |
|---|---|
| Autoři: | M. A. Stepanova |
| Zdroj: | Научно-технический вестник информационных технологий, механики и оптики, Vol 25, Iss 5, Pp 996-998 (2025) |
| Informace o vydavateli: | ITMO University, 2025. |
| Rok vydání: | 2025 |
| Sbírka: | LCC:Information technology |
| Témata: | барицентрическая система координат, арицентрическая матрица, базисный симплекс, объем симплекса, Information technology, T58.5-58.64 |
| Popis: | The paper describes three ways of calculating the k-dimensional volume of the k-dimensional simplex in the n-dimensional Euclidean space (n ≥ k) in the canonical barycentric coordinate system. The first method is to calculate for the n-dimensional simplex using the determinant of the barycentric matrix, the columns of which are the barycentric coordinates of the simplex vertices. The second method is to calculate the volume for k-dimensional simplex using the Cayley–Menger determinant through the lengths of the simplex edges which can be found from the barycentric coordinates of the vertices. The third method is to compute using a Gram determinant for a system of vectors constructed from the vertices of a given simplex in a (n + 1)-dimensional Euclidean space. |
| Druh dokumentu: | article |
| Popis souboru: | electronic resource |
| Jazyk: | English Russian |
| ISSN: | 2226-1494 2500-0373 |
| Relation: | https://ntv.elpub.ru/jour/article/view/529; https://doaj.org/toc/2226-1494; https://doaj.org/toc/2500-0373 |
| DOI: | 10.17586/2226-1494-2025-25-5-996-998 |
| Přístupová URL adresa: | https://doaj.org/article/ce3f5853bf6a4bfc9ac1b07444b4d88b |
| Přístupové číslo: | edsdoj.3f5853bf6a4bfc9ac1b07444b4d88b |
| Databáze: | Directory of Open Access Journals |
| Abstrakt: | The paper describes three ways of calculating the k-dimensional volume of the k-dimensional simplex in the n-dimensional Euclidean space (n ≥ k) in the canonical barycentric coordinate system. The first method is to calculate for the n-dimensional simplex using the determinant of the barycentric matrix, the columns of which are the barycentric coordinates of the simplex vertices. The second method is to calculate the volume for k-dimensional simplex using the Cayley–Menger determinant through the lengths of the simplex edges which can be found from the barycentric coordinates of the vertices. The third method is to compute using a Gram determinant for a system of vectors constructed from the vertices of a given simplex in a (n + 1)-dimensional Euclidean space. |
|---|---|
| ISSN: | 22261494 25000373 |
| DOI: | 10.17586/2226-1494-2025-25-5-996-998 |
Nájsť tento článok vo Web of Science