A deep-learning framework for multi-level peptide–protein interaction prediction

Uloženo v:
Podrobná bibliografie
Název: A deep-learning framework for multi-level peptide–protein interaction prediction
Autoři: Yipin Lei, Shuya Li, Ziyi Liu, Fangping Wan, Tingzhong Tian, Shao Li, Dan Zhao, Jianyang Zeng
Zdroj: Nature Communications, Vol 12, Iss 1, Pp 1-10 (2021)
Informace o vydavateli: Nature Portfolio, 2021.
Rok vydání: 2021
Sbírka: LCC:Science
Témata: Science
Popis: Peptide-protein interactions play fundamental roles in cellular processes and are crucial for designing peptide therapeutics. Here, the authors present a deep learning framework for simultaneously predicting peptide-protein interactions and identifying peptide binding residues involved in the interactions.
Druh dokumentu: article
Popis souboru: electronic resource
Jazyk: English
ISSN: 2041-1723
Relation: https://doaj.org/toc/2041-1723
DOI: 10.1038/s41467-021-25772-4
Přístupová URL adresa: https://doaj.org/article/3c57279c8dca432e92343f39c256dd79
Přístupové číslo: edsdoj.3c57279c8dca432e92343f39c256dd79
Databáze: Directory of Open Access Journals
Popis
Abstrakt:Peptide-protein interactions play fundamental roles in cellular processes and are crucial for designing peptide therapeutics. Here, the authors present a deep learning framework for simultaneously predicting peptide-protein interactions and identifying peptide binding residues involved in the interactions.
ISSN:20411723
DOI:10.1038/s41467-021-25772-4