Ideal convergence and ideal Cauchy sequences in intuitionistic fuzzy metric spaces

Uloženo v:
Podrobná bibliografie
Název: Ideal convergence and ideal Cauchy sequences in intuitionistic fuzzy metric spaces
Autoři: Or Aykut, Karabacak Gökay
Zdroj: Mathematica Moravica, Vol 27, Iss 1, Pp 113-128 (2023)
Informace o vydavateli: University of Kragujevac, Faculty of Technical Sciences Čačak, 2023.
Rok vydání: 2023
Sbírka: LCC:Mathematics
Témata: ideal convergence, ideal cauchy sequences, cluster points, limit points, intuitionistic fuzzy metric spaces, Mathematics, QA1-939
Popis: The present study introduces the concepts of ideal convergence (I-convergence), ideal Cauchy (I-Cauchy) sequences, I *-convergence, and I *-Cauchy sequences in intuitionistic fuzzy metric spaces. It defines I-limit and I-cluster points as a sequence in these spaces. Afterward, it examines some of their basic properties. Lastly, the paper discusses whether phenomena should be further investigated.
Druh dokumentu: article
Popis souboru: electronic resource
Jazyk: English
ISSN: 1450-5932
2560-5542
Relation: https://scindeks-clanci.ceon.rs/data/pdf/1450-5932/2023/1450-59322301113O.pdf; https://doaj.org/toc/1450-5932; https://doaj.org/toc/2560-5542
Přístupová URL adresa: https://doaj.org/article/a291c27d1b62493998c2d91736e45bb0
Přístupové číslo: edsdoj.291c27d1b62493998c2d91736e45bb0
Databáze: Directory of Open Access Journals
Popis
Abstrakt:The present study introduces the concepts of ideal convergence (I-convergence), ideal Cauchy (I-Cauchy) sequences, I *-convergence, and I *-Cauchy sequences in intuitionistic fuzzy metric spaces. It defines I-limit and I-cluster points as a sequence in these spaces. Afterward, it examines some of their basic properties. Lastly, the paper discusses whether phenomena should be further investigated.
ISSN:14505932
25605542