Turing instability in the Lengyel–Epstein fractional Laplacian system

Uloženo v:
Podrobná bibliografie
Název: Turing instability in the Lengyel–Epstein fractional Laplacian system
Autoři: Salim Zidi
Zdroj: Boundary Value Problems, Vol 2024, Iss 1, Pp 1-20 (2024)
Informace o vydavateli: SpringerOpen, 2024.
Rok vydání: 2024
Sbírka: LCC:Analysis
Témata: Turing instability, Lengyel–Epstein, Regional fractional Laplacian, Nonconstant positive solutions, Analysis, QA299.6-433
Popis: Abstract This paper discusses a space-fractional version of the conventional Lengyel–Epstein CIMA reaction model. First, we prove the global existence, uniqueness, and boundedness of a unique solution. We next investigate the system fundamental analytic properties. Following this, we establish the conditions on the reactor size and diffusion coefficient such that the system does not allow positive steady-state solutions that are not constant. Finally, the stability of constant steady-state solutions for ODE and PDE models is studied.
Druh dokumentu: article
Popis souboru: electronic resource
Jazyk: English
ISSN: 1687-2770
Relation: https://doaj.org/toc/1687-2770
DOI: 10.1186/s13661-024-01961-0
Přístupová URL adresa: https://doaj.org/article/225e5fa965a64b91952a6b89e2c5867d
Přístupové číslo: edsdoj.225e5fa965a64b91952a6b89e2c5867d
Databáze: Directory of Open Access Journals
Popis
Abstrakt:Abstract This paper discusses a space-fractional version of the conventional Lengyel–Epstein CIMA reaction model. First, we prove the global existence, uniqueness, and boundedness of a unique solution. We next investigate the system fundamental analytic properties. Following this, we establish the conditions on the reactor size and diffusion coefficient such that the system does not allow positive steady-state solutions that are not constant. Finally, the stability of constant steady-state solutions for ODE and PDE models is studied.
ISSN:16872770
DOI:10.1186/s13661-024-01961-0