Scientific planning of dynamic crops in complex agricultural landscapes based on adaptive optimization hybrid SA-GA method

Gespeichert in:
Bibliographische Detailangaben
Titel: Scientific planning of dynamic crops in complex agricultural landscapes based on adaptive optimization hybrid SA-GA method
Autoren: Changlong Li, Zengye Su, Yudan Nie, Zhiyi Ye, Jinyi Li, Jing Wang, Zicong Yang, Xuxin Li, Weijian Zeng, Yanjian Chen
Quelle: Scientific Reports, Vol 15, Iss 1, Pp 1-22 (2025)
Verlagsinformationen: Nature Portfolio, 2025.
Publikationsjahr: 2025
Bestand: LCC:Medicine
LCC:Science
Schlagwörter: Hybrid H-SAGA, Agricultural optimization, Crop-planning, Resource efficiency, Climate adaptation, Northern China Mountains, Medicine, Science
Beschreibung: Abstract Effective dynamic agricultural planning is crucial for optimising resource allocation and ensuring income stability, yet conventional methods often face limitations in adapting to the complex and variable conditions of mountainous regions, particularly under fluctuating climate and market pressures. Therefore, this study introduces a novel multi-stage dynamic optimization framework specifically designed for crop planning in such challenging terrains. This framework is underpinned by a sophisticated model integrating advanced monitoring systems with a Hybrid Simulated Annealing Genetic Algorithm (H-SAGA), further enhanced by neural network-driven real-time predictions. The H-SAGA component optimises planting strategies by synergistically combining global exploration (SA) and local refinement (GA) capabilities, while the neural network dynamically adjusts revenue forecasts based on climatic and market data, significantly improving the model’s responsiveness and adaptability. We rigorously evaluated the applicability and effectiveness of this model through extensive simulations across 7,290 mu (1,201 acres) of diverse farmland in mountainous Northern China. The results demonstrate that the proposed H-SAGA approach consistently achieves 5–10 percentage points higher profit increment ratios than other benchmark optimization algorithms (such as GA, SA, PSO, and ACO), alongside faster convergence and notable robustness against environmental and economic variability. This research establishes an integrated “monitoring-modelling-decision” paradigm, driven by multi-source data and machine learning, offering a practical and robust tool that provides valuable guidance for enhancing resource allocation efficiency and promoting sustainable precision agriculture in complex topographical regions, thereby holding significant reference value for optimising agricultural production nationwide.
Publikationsart: article
Dateibeschreibung: electronic resource
Sprache: English
ISSN: 2045-2322
Relation: https://doaj.org/toc/2045-2322
DOI: 10.1038/s41598-025-14188-5
Zugangs-URL: https://doaj.org/article/0fae1c810d444e72ad807f35ca1966d9
Dokumentencode: edsdoj.0fae1c810d444e72ad807f35ca1966d9
Datenbank: Directory of Open Access Journals
Beschreibung
Abstract:Abstract Effective dynamic agricultural planning is crucial for optimising resource allocation and ensuring income stability, yet conventional methods often face limitations in adapting to the complex and variable conditions of mountainous regions, particularly under fluctuating climate and market pressures. Therefore, this study introduces a novel multi-stage dynamic optimization framework specifically designed for crop planning in such challenging terrains. This framework is underpinned by a sophisticated model integrating advanced monitoring systems with a Hybrid Simulated Annealing Genetic Algorithm (H-SAGA), further enhanced by neural network-driven real-time predictions. The H-SAGA component optimises planting strategies by synergistically combining global exploration (SA) and local refinement (GA) capabilities, while the neural network dynamically adjusts revenue forecasts based on climatic and market data, significantly improving the model’s responsiveness and adaptability. We rigorously evaluated the applicability and effectiveness of this model through extensive simulations across 7,290 mu (1,201 acres) of diverse farmland in mountainous Northern China. The results demonstrate that the proposed H-SAGA approach consistently achieves 5–10 percentage points higher profit increment ratios than other benchmark optimization algorithms (such as GA, SA, PSO, and ACO), alongside faster convergence and notable robustness against environmental and economic variability. This research establishes an integrated “monitoring-modelling-decision” paradigm, driven by multi-source data and machine learning, offering a practical and robust tool that provides valuable guidance for enhancing resource allocation efficiency and promoting sustainable precision agriculture in complex topographical regions, thereby holding significant reference value for optimising agricultural production nationwide.
ISSN:20452322
DOI:10.1038/s41598-025-14188-5