Tensor-to-scalar ratio forecasts for extended LiteBIRD frequency configurations

Gespeichert in:
Bibliographische Detailangaben
Titel: Tensor-to-scalar ratio forecasts for extended LiteBIRD frequency configurations
Autoren: Fuskeland, U., Aumont, J., Aurlien, R., Baccigalupi, C., Banday, A.J., Eriksen, H.K., Errard, J., Génova-Santos, R.T., Hasebe, T., Hubmayr, J., Imada, H., Krachmalnicoff, N., Lamagna, L., Pisano, G., Poletti, D., Remazeilles, M., Thompson, K.L., Vacher, L., Wehus, I.K., Azzoni, S., Ballardini, M., Barreiro, R.B., Bartolo, N., Basyrov, A., Beck, D., Bersanelli, M., Bortolami, M., Brilenkov, M., Calabrese, E., Carones, A., Casas, F.J., Cheung, K., Chluba, J., Clark, S.E., Clermont, L., Columbro, F., Coppolecchia, A., d'Alessandro, G., de Bernardis, P., de Haan, T., de la Hoz, E., de Petris, M., Della Torre, S., Diego-Palazuelos, P., Finelli, F., Franceschet, C., Galloni, G., Galloway, M., Gerbino, M., Gervasi, M., Ghigna, T., Giardiello, S., Gjerløw, E., Gruppuso, A., Hargrave, P., Hattori, M., Hazumi, M., Hergt, L.T., Herman, D., Herranz, D., Hivon, E., Hoang, T.D., Kohri, K., Lattanzi, M., Lee, A.T., Leloup, C., Levrier, F., Lonappan, A.I., Luzzi, G., Maffei, B., Martínez-González, E., Masi, S., Matarrese, S., Matsumura, T., Migliaccio, M., Montier, L., Morgante, G., Mot, B., Mousset, L., Nagata, R., Namikawa, T., Nati, F., Natoli, P., Nerval, S., Novelli, A., Pagano, L., Paiella, A., Paoletti, D., Pascual-Cisneros, G., Patanchon, G., Pelgrims, V., Piacentini, F., Piccirilli, G., Polenta, G., Puglisi, G., Raffuzzi, N., Ritacco, A., Rubino-Martin, J.A., Savini, G., Scott, D., Sekimoto, Y., Shiraishi, M., Signorelli, G., Stever, S.L., Stutzer, N., Sullivan, R.M., Takakura, H., Terenzi, L., Thommesen, H., Tristram, M., Tsuji, M., Vielva, P., Weller, J., Westbrook, B., Weymann-Despres, G., Wollack, E.J., Zannoni, M.
Weitere Verfasser: Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Centre National de la Recherche Scientifique (CNRS)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Centre National d'Études Spatiales Toulouse (CNES), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Astrophysique, Laboratoire de physique de l'ENS - ENS Paris (LPENS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL), Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales Paris (CNES), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), LiteBIRD, European Project: 772253,ERC-2017-COG,ERC-2017-COG,Bits2Cosmology(2018), European Project: 819478,ERC-2018-COG,ERC-2018-COG,Cosmoglobe(2019), European Project: 725456,ERC-2016-COG,ERC-2016-COG,CMBSPEC(2017), European Project: 849169,ERC-2019-STG,ERC-2019-STG,CMBforward(2020)
Quelle: ISSN: 0004-6361.
Verlagsinformationen: CCSD
EDP Sciences
Publikationsjahr: 2023
Bestand: Université Toulouse III - Paul Sabatier: HAL-UPS
Schlagwörter: [PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
Beschreibung: International audience ; LiteBIRD is a planned JAXA-led CMB B-mode satellite experiment aiming for launch in the late 2020s, with a primary goal of detecting the imprint of primordial inflationary gravitational waves. Its current baseline focal-plane configuration includes 15 frequency bands between 40 and 402 GHz, fulfilling the mission requirements to detect the amplitude of gravitational waves with the total uncertainty on the tensor-to-scalar ratio, $\delta r$, down to $\delta r<0.001$. A key aspect of this performance is accurate astrophysical component separation, and the ability to remove polarized thermal dust emission is particularly important. In this paper we note that the CMB frequency spectrum falls off nearly exponentially above 300 GHz relative to the thermal dust SED, and a relatively minor high frequency extension can therefore result in even lower uncertainties and better model reconstructions. Specifically, we compare the baseline design with five extended configurations, while varying the underlying dust modeling, in each of which the HFT (High-Frequency Telescope) frequency range is shifted logarithmically towards higher frequencies, with an upper cutoff ranging between 400 and 600 GHz. In each case, we measure the tensor-to-scalar ratio $r$ uncertainty and bias using both parametric and minimum-variance component-separation algorithms. When the thermal dust sky model includes a spatially varying spectral index and temperature, we find that the statistical uncertainty on $r$ after foreground cleaning may be reduced by as much as 30--50 % by extending the upper limit of the frequency range from 400 to 600 GHz, with most of the improvement already gained at 500 GHz. We also note that a broader frequency range leads to better ability to discriminate between models through higher $\chi^2$ sensitivity. (abridged)
Publikationsart: article in journal/newspaper
Sprache: English
Relation: info:eu-repo/semantics/altIdentifier/arxiv/2302.05228; info:eu-repo/grantAgreement//772253/EU/Time-domain Gibbs sampling: From bits to inflationary gravitational waves/Bits2Cosmology; info:eu-repo/grantAgreement//819478/EU/Cosmoglobe -- mapping the universe from the Milky Way to the Big Bang/Cosmoglobe; info:eu-repo/grantAgreement//725456/EU/Next Steps in Cosmology with CMB Spectral Distortions/CMBSPEC; info:eu-repo/grantAgreement//849169/EU/A programme for cosmology from current and next-generation Cosmic Microwave Background experiments/CMBforward; ARXIV: 2302.05228; INSPIRE: 2631168
DOI: 10.1051/0004-6361/202346155
Verfügbarkeit: https://hal.science/hal-04006490
https://hal.science/hal-04006490v1/document
https://hal.science/hal-04006490v1/file/aa46155-23.pdf
https://doi.org/10.1051/0004-6361/202346155
Rights: http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
Dokumentencode: edsbas.F13C114E
Datenbank: BASE
Beschreibung
Abstract:International audience ; LiteBIRD is a planned JAXA-led CMB B-mode satellite experiment aiming for launch in the late 2020s, with a primary goal of detecting the imprint of primordial inflationary gravitational waves. Its current baseline focal-plane configuration includes 15 frequency bands between 40 and 402 GHz, fulfilling the mission requirements to detect the amplitude of gravitational waves with the total uncertainty on the tensor-to-scalar ratio, $\delta r$, down to $\delta r<0.001$. A key aspect of this performance is accurate astrophysical component separation, and the ability to remove polarized thermal dust emission is particularly important. In this paper we note that the CMB frequency spectrum falls off nearly exponentially above 300 GHz relative to the thermal dust SED, and a relatively minor high frequency extension can therefore result in even lower uncertainties and better model reconstructions. Specifically, we compare the baseline design with five extended configurations, while varying the underlying dust modeling, in each of which the HFT (High-Frequency Telescope) frequency range is shifted logarithmically towards higher frequencies, with an upper cutoff ranging between 400 and 600 GHz. In each case, we measure the tensor-to-scalar ratio $r$ uncertainty and bias using both parametric and minimum-variance component-separation algorithms. When the thermal dust sky model includes a spatially varying spectral index and temperature, we find that the statistical uncertainty on $r$ after foreground cleaning may be reduced by as much as 30--50 % by extending the upper limit of the frequency range from 400 to 600 GHz, with most of the improvement already gained at 500 GHz. We also note that a broader frequency range leads to better ability to discriminate between models through higher $\chi^2$ sensitivity. (abridged)
DOI:10.1051/0004-6361/202346155