Möjligheterna att implementera bio-CCS och CCS på Högdalenverket : En fallstudie över fyra olika koldioxidavskiljningsteknologier och deras kompatibilitet på Högdalenverket med avseende på tekniska, ekonomiska, miljömässiga och energirelaterade aspekter. ; The possibilities to implement bio-CCS and CCS at Högdalenverket : A case study about four different carbon capture technologies and their compatibility at Högdalenverket with regards to technical, economical, environmental and energy related aspects

Saved in:
Bibliographic Details
Title: Möjligheterna att implementera bio-CCS och CCS på Högdalenverket : En fallstudie över fyra olika koldioxidavskiljningsteknologier och deras kompatibilitet på Högdalenverket med avseende på tekniska, ekonomiska, miljömässiga och energirelaterade aspekter. ; The possibilities to implement bio-CCS and CCS at Högdalenverket : A case study about four different carbon capture technologies and their compatibility at Högdalenverket with regards to technical, economical, environmental and energy related aspects
Authors: Nilsson, Emma, Östlund, Evelina
Publisher Information: Linköpings universitet, Energisystem
Publication Year: 2021
Collection: Linköping University Electronic Press (LiU E-Press)
Subject Terms: CCS, bio-CCS, BECSS, aminteknologi, Hot Potassium Carbonates, Compact Carbon Capture, Svante, kraftvärmeverk, avfallsförbränning, koldioxidavskiljning, Energy Engineering, Energiteknik
Description: Increased carbon dioxide in the atmosphere has raised the attention to Carbon Capture and Storage (CCS). Stockholm Exergi is a company conducting research on CCS and bio-CCS, a form of CCS where biogenic CO2 is captured. This master thesis analyzed the possibilities to implement CCS and bio-CCS at Högdalenverket, one of Stockholm Exergi’s combined heat and power plant with waste incineration. The aim was to investigate advantages and disadvantages with different carbon capture technologies (CC technologies) considering technical, economical, and energy related aspects. Industrial and household waste are incinerated in four boilers at Högdalenverket. Two cases were analyzed, one case with all boilers connected to the CC technology and one case with the boiler with the highest degree of CO2 emission connected. The CC technologies taken into consideration were amine technology, Hot Potassium Carbonates (HPC), Compact Carbon Capture (3C), and Svante. Amine technology and HPC use chemical absorption in static columns. The Amine technology is the most investigated and used one. It uses temperature swing absorption with amines as absorbent. HPC uses pressure swing absorption with potassium carbonate as absorbent. The remaining two are new process intensified technologies. 3C uses rotating packed beds and absorbs CO2 chemically using, most commonly, amines. Svante also uses a rotating technique by chemically adsorbing CO2 with nanomaterial as the solid adsorbent. All CC technologies need steam to regenerate CO2. The steam was assumed to be extracted from the existing steam network at Högdalenverket with a pressure and temperature of 36 bar and 400 degrees. The method used in the study was mainly literature review with peer reviewed articles regarding CCS as base. It was of importance to analyze how the flue gases could affect the CC technologies since the waste has an inhomogeneous composition. The flue gas composition was compiled using external and internal measurements from 2019 and 2020. Furthermore, energy and ...
Document Type: bachelor thesis
File Description: application/pdf
Language: Swedish
Availability: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176516
Rights: info:eu-repo/semantics/openAccess
Accession Number: edsbas.EFE311CE
Database: BASE
Description
Abstract:Increased carbon dioxide in the atmosphere has raised the attention to Carbon Capture and Storage (CCS). Stockholm Exergi is a company conducting research on CCS and bio-CCS, a form of CCS where biogenic CO2 is captured. This master thesis analyzed the possibilities to implement CCS and bio-CCS at Högdalenverket, one of Stockholm Exergi’s combined heat and power plant with waste incineration. The aim was to investigate advantages and disadvantages with different carbon capture technologies (CC technologies) considering technical, economical, and energy related aspects. Industrial and household waste are incinerated in four boilers at Högdalenverket. Two cases were analyzed, one case with all boilers connected to the CC technology and one case with the boiler with the highest degree of CO2 emission connected. The CC technologies taken into consideration were amine technology, Hot Potassium Carbonates (HPC), Compact Carbon Capture (3C), and Svante. Amine technology and HPC use chemical absorption in static columns. The Amine technology is the most investigated and used one. It uses temperature swing absorption with amines as absorbent. HPC uses pressure swing absorption with potassium carbonate as absorbent. The remaining two are new process intensified technologies. 3C uses rotating packed beds and absorbs CO2 chemically using, most commonly, amines. Svante also uses a rotating technique by chemically adsorbing CO2 with nanomaterial as the solid adsorbent. All CC technologies need steam to regenerate CO2. The steam was assumed to be extracted from the existing steam network at Högdalenverket with a pressure and temperature of 36 bar and 400 degrees. The method used in the study was mainly literature review with peer reviewed articles regarding CCS as base. It was of importance to analyze how the flue gases could affect the CC technologies since the waste has an inhomogeneous composition. The flue gas composition was compiled using external and internal measurements from 2019 and 2020. Furthermore, energy and ...