Implementations of Post-Quantum Cryptography Algorithms Secured Against Physical Attacks ; Implantations d'algorithmes de cryptographie post-quantique sécurisées contre les attaques physiques
Saved in:
| Title: | Implementations of Post-Quantum Cryptography Algorithms Secured Against Physical Attacks ; Implantations d'algorithmes de cryptographie post-quantique sécurisées contre les attaques physiques |
|---|---|
| Authors: | Calle Viera, Andersson |
| Contributors: | ALgorithms for coMmunicAtion SecuriTY (ALMASTY), LIP6, Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Damien Vergnaud, Alexandre Berzati |
| Source: | https://theses.hal.science/tel-05131562 ; Cryptography and Security [cs.CR]. Sorbonne Université, 2025. English. ⟨NNT : 2025SORUS061⟩. |
| Publisher Information: | CCSD |
| Publication Year: | 2025 |
| Subject Terms: | Post-Quantum Qryptography, Embedded Systems, Side Channel Attacks, Fault Attacks, Cryptographie post-quantique, Systèmes embarqués, Attaques par canaux auxiliaires, Attaques par fautes, [INFO.INFO-CR]Computer Science [cs]/Cryptography and Security [cs.CR], [INFO.INFO-ES]Computer Science [cs]/Embedded Systems |
| Description: | This thesis investigates the challenges of implementing a secure, optimized version of the Dilithium signature scheme on embedded devices, focusing on side-channel and fault attacks. The research contributes to the broader field of post-quantum cryptography (PQC) by exploring practical vulnerabilities and countermeasures in real-world deployments. The first contribution involves optimizing Dilithium's signature algorithm. The study compares polynomial-based and vector-based implementations, demonstrating that a careful choice of data structures and computations can lead to significant memory savings without substantial performance overhead. This optimization is crucial for embedded devices, where memory is often the most constrained resource. The thesis also focuses on side-channel and fault attacks against Dilithium. Regarding side-channel attacks, the research identifies an intermediate value leakage exploitable through profiled attacks, allowing the robust recovery of the secret key with around 2 million signatures. Regarding fault attacks, the research identifies several locations relevant to fault attacks both in the signature algorithm, allowing the recovery of the secret key, and in the verification algorithms, allowing the acceptance of incorrect signatures. The research ultimately contributes to understanding how to balance security and efficiency in post-quantum cryptographic implementations. The thesis provides insights into deploying PQC schemes securely on embedded platforms by optimizing Dilithium's memory footprint and evaluating attack resilience. ; Cette thèse étudie les défis liés à la mise en œuvre d'une version sécurisée et optimisée du schéma de signature Dilithium sur des dispositifs embarqués, en se concentrant sur les attaques par canaux auxiliaires et les attaques par fautes. La thèse contribue au domaine plus large de la cryptographie post-quantique (PQC) en explorant les vulnérabilités pratiques et les contre-mesures dans les déploiements du monde réel. La première contribution ... |
| Document Type: | doctoral or postdoctoral thesis |
| Language: | English |
| Relation: | NNT: 2025SORUS061 |
| Availability: | https://theses.hal.science/tel-05131562 https://theses.hal.science/tel-05131562v1/document https://theses.hal.science/tel-05131562v1/file/147936_CALLE_VIERA_2025_archivage.pdf |
| Rights: | info:eu-repo/semantics/OpenAccess |
| Accession Number: | edsbas.ADEB1953 |
| Database: | BASE |
| Abstract: | This thesis investigates the challenges of implementing a secure, optimized version of the Dilithium signature scheme on embedded devices, focusing on side-channel and fault attacks. The research contributes to the broader field of post-quantum cryptography (PQC) by exploring practical vulnerabilities and countermeasures in real-world deployments. The first contribution involves optimizing Dilithium's signature algorithm. The study compares polynomial-based and vector-based implementations, demonstrating that a careful choice of data structures and computations can lead to significant memory savings without substantial performance overhead. This optimization is crucial for embedded devices, where memory is often the most constrained resource. The thesis also focuses on side-channel and fault attacks against Dilithium. Regarding side-channel attacks, the research identifies an intermediate value leakage exploitable through profiled attacks, allowing the robust recovery of the secret key with around 2 million signatures. Regarding fault attacks, the research identifies several locations relevant to fault attacks both in the signature algorithm, allowing the recovery of the secret key, and in the verification algorithms, allowing the acceptance of incorrect signatures. The research ultimately contributes to understanding how to balance security and efficiency in post-quantum cryptographic implementations. The thesis provides insights into deploying PQC schemes securely on embedded platforms by optimizing Dilithium's memory footprint and evaluating attack resilience. ; Cette thèse étudie les défis liés à la mise en œuvre d'une version sécurisée et optimisée du schéma de signature Dilithium sur des dispositifs embarqués, en se concentrant sur les attaques par canaux auxiliaires et les attaques par fautes. La thèse contribue au domaine plus large de la cryptographie post-quantique (PQC) en explorant les vulnérabilités pratiques et les contre-mesures dans les déploiements du monde réel. La première contribution ... |
|---|
Nájsť tento článok vo Web of Science