Podrobná bibliografie
| Název: |
Revisiting the convergence rate of the Lasserre hierarchy for polynomial optimization over the hypercube |
| Autoři: |
Gribling, Sander, de Klerk, Etienne, Vera, Juan |
| Rok vydání: |
2025 |
| Sbírka: |
ArXiv.org (Cornell University Library) |
| Témata: |
Optimization and Control |
| Popis: |
We revisit the problem of minimizing a given polynomial $f$ on the hypercube $[-1,1]^n$. Lasserre's hierarchy (also known as the moment- or sum-of-squares hierarchy) provides a sequence of lower bounds $\{f_{(r)}\}_{r \in \mathbb N}$ on the minimum value $f^*$, where $r$ refers to the allowed degrees in the sum-of-squares hierarchy. A natural question is how fast the hierarchy converges as a function of the parameter $r$. The current state-of-the-art is due to Baldi and Slot [SIAM J. on Applied Algebraic Geometry, 2024] and roughly shows a convergence rate of order $1/r$. Here we obtain closely related results via a different approach: the polynomial kernel method. We also discuss limitations of the polynomial kernel method, suggesting a lower bound of order $1/r^2$ for our approach. ; 24 pages, 3 figures |
| Druh dokumentu: |
text |
| Jazyk: |
unknown |
| Relation: |
http://arxiv.org/abs/2505.00544 |
| Dostupnost: |
http://arxiv.org/abs/2505.00544 |
| Přístupové číslo: |
edsbas.AA21A4E4 |
| Databáze: |
BASE |