AFFEC Multimodal Dataset

Gespeichert in:
Bibliographische Detailangaben
Titel: AFFEC Multimodal Dataset
Autoren: IT University of Copenhagen, orcid:0000-0002-1271-, Jamshidi Seikavandi, Meisam, Dixen, Laurits, Burelli, Paolo
Verlagsinformationen: Zenodo
Publikationsjahr: 2025
Bestand: Zenodo
Schlagwörter: Expressed Emotion/classification, Emotions/classification, Expressed Emotion/physiology, Electroencephalography, Electroencephalography/classification, Face/physiology, Social Interaction, Social Interaction/classification, Galvanic Skin Response, Galvanic Skin Response/physiology, Pupil/physiology, Eye Tracker
Beschreibung: Dataset: AFFEC - Advancing Face-to-Face Emotion Communication Dataset Overview The AFFEC (Advancing Face-to-Face Emotion Communication) dataset is a multimodal dataset designed for emotion recognition research. It captures dynamic human interactions through electroencephalography (EEG), eye-tracking, galvanic skin response (GSR), facial movements, and self-annotations, enabling the study of felt and perceived emotions in real-world face-to-face interactions. The dataset comprises 84 simulated emotional dialogues, 72 participants, and over 5,000 trials, annotated with more than 20,000 emotion labels. Dataset Structure The dataset follows the Brain Imaging Data Structure (BIDS) format and consists of the following components: Root Folder: sub-* : Individual subject folders (e.g., sub-aerj, sub-mdl, sub-xx2) dataset_description.json: General dataset metadata participants.json and participants.tsv: Participant demographics and attributes task-fer_events.json: Event annotations for the FER task README.md: This documentation file Subject Folders (sub- ): Each subject folder contains: Behavioral Data (beh/): Physiological recordings (eye tracking, GSR, facial analysis, cursor tracking) in JSON and TSV formats. EEG Data (eeg/): EEG recordings in .edf and corresponding metadata in .json. Event Files (*.tsv): Trial event data for the emotion recognition task. Channel Descriptions (*_channels.tsv): EEG channel information. Data Modalities and Channels 1. Eye Tracking Data Channels: 16 (fixation points, left/right eye gaze coordinates, gaze validity) Sampling Rate: 62 Hz Trials: 5632 File Example: sub- _task-fer_run-0_recording-gaze_physio.json 2. Pupil Data Channels: 21 (pupil diameter, eye position, pupil validity flags) Sampling Rate: 149 Hz Trials: 5632 File Example: sub- _task-fer_run-0_recording-pupil_physio.json 3. Cursor Tracking Data Channels: 4 (cursor X, cursor Y, cursor state) Sampling Rate: 62 Hz Trials: 5632 File Example: sub- _task-fer_run-0_recording-cursor_physio.json 4. Face Analysis Data Channels: Over ...
Publikationsart: dataset
Sprache: unknown
Relation: https://zenodo.org/communities/itubrainlab/; https://zenodo.org/records/14794876; oai:zenodo.org:14794876; https://doi.org/10.5281/zenodo.14794876
DOI: 10.5281/zenodo.14794876
Verfügbarkeit: https://doi.org/10.5281/zenodo.14794876
https://zenodo.org/records/14794876
Rights: Creative Commons Attribution 4.0 International ; cc-by-4.0 ; https://creativecommons.org/licenses/by/4.0/legalcode
Dokumentencode: edsbas.96D50C93
Datenbank: BASE
Beschreibung
Abstract:Dataset: AFFEC - Advancing Face-to-Face Emotion Communication Dataset Overview The AFFEC (Advancing Face-to-Face Emotion Communication) dataset is a multimodal dataset designed for emotion recognition research. It captures dynamic human interactions through electroencephalography (EEG), eye-tracking, galvanic skin response (GSR), facial movements, and self-annotations, enabling the study of felt and perceived emotions in real-world face-to-face interactions. The dataset comprises 84 simulated emotional dialogues, 72 participants, and over 5,000 trials, annotated with more than 20,000 emotion labels. Dataset Structure The dataset follows the Brain Imaging Data Structure (BIDS) format and consists of the following components: Root Folder: sub-* : Individual subject folders (e.g., sub-aerj, sub-mdl, sub-xx2) dataset_description.json: General dataset metadata participants.json and participants.tsv: Participant demographics and attributes task-fer_events.json: Event annotations for the FER task README.md: This documentation file Subject Folders (sub- ): Each subject folder contains: Behavioral Data (beh/): Physiological recordings (eye tracking, GSR, facial analysis, cursor tracking) in JSON and TSV formats. EEG Data (eeg/): EEG recordings in .edf and corresponding metadata in .json. Event Files (*.tsv): Trial event data for the emotion recognition task. Channel Descriptions (*_channels.tsv): EEG channel information. Data Modalities and Channels 1. Eye Tracking Data Channels: 16 (fixation points, left/right eye gaze coordinates, gaze validity) Sampling Rate: 62 Hz Trials: 5632 File Example: sub- _task-fer_run-0_recording-gaze_physio.json 2. Pupil Data Channels: 21 (pupil diameter, eye position, pupil validity flags) Sampling Rate: 149 Hz Trials: 5632 File Example: sub- _task-fer_run-0_recording-pupil_physio.json 3. Cursor Tracking Data Channels: 4 (cursor X, cursor Y, cursor state) Sampling Rate: 62 Hz Trials: 5632 File Example: sub- _task-fer_run-0_recording-cursor_physio.json 4. Face Analysis Data Channels: Over ...
DOI:10.5281/zenodo.14794876