Comparison of Clenshaw-Curtis and Leja Quasi-Optimal Sparse Grids for the Approximation of Random PDEs

Gespeichert in:
Bibliographische Detailangaben
Titel: Comparison of Clenshaw-Curtis and Leja Quasi-Optimal Sparse Grids for the Approximation of Random PDEs
Autoren: Nobile, Fabio, Tamellini, Lorenzo, Tempone, Raul
Weitere Verfasser: Kirby, Robert M., Berzins, Martin, Hesthaven, Jan S.
Verlagsinformationen: Springer
Publikationsjahr: 2014
Bestand: Ecole Polytechnique Fédérale Lausanne (EPFL): Infoscience
Schlagwörter: Uncertainty Quantification, PDEs with random data, linear elliptic equations, Stochastic Collocation methods, Sparse grids approximation, Leja points, Clenshaw–Curtis points
Beschreibung: In this work we compare different families of nested quadrature points, i.e. the classic Clenshaw-Curtis and various kinds of Leja points, in the context of the quasi-optimal sparse grid approximation of random elliptic PDEs. Numerical evidence suggests that both families perform comparably within such framework. ; CSQI
Publikationsart: conference object
Sprache: unknown
ISBN: 978-3-319-19800-2
3-319-19800-9
ISSN: 1439-7358
Relation: https://infoscience.epfl.ch/record/201919/files/2015_Nobile_Tamellini_Tempone_LNCSE_Comparison.pdf; https://infoscience.epfl.ch/record/201919/files/icosahom2014-proceedings.zip; Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014; Lecture Notes in Computational Science and Engineering; 106; International Conference on Spectral and High-Order Methods 2014 (ICOSAHOM'14); #PLACEHOLDER_PARENT_METADATA_VALUE#; https://infoscience.epfl.ch/handle/20.500.14299/107171; WOS:000368440400044
DOI: 10.1007/978-3-319-19800-2_44
Verfügbarkeit: https://doi.org/10.1007/978-3-319-19800-2_44
https://infoscience.epfl.ch/handle/20.500.14299/107171
https://hdl.handle.net/20.500.14299/107171
Dokumentencode: edsbas.9643F450
Datenbank: BASE
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://doi.org/10.1007/978-3-319-19800-2_44#
    Name: EDS - BASE (s4221598)
    Category: fullText
    Text: View record from BASE
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Nobile%20F
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsbas
DbLabel: BASE
An: edsbas.9643F450
RelevancyScore: 793
AccessLevel: 3
PubType: Conference
PubTypeId: conference
PreciseRelevancyScore: 793.219055175781
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Comparison of Clenshaw-Curtis and Leja Quasi-Optimal Sparse Grids for the Approximation of Random PDEs
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Nobile%2C+Fabio%22">Nobile, Fabio</searchLink><br /><searchLink fieldCode="AR" term="%22Tamellini%2C+Lorenzo%22">Tamellini, Lorenzo</searchLink><br /><searchLink fieldCode="AR" term="%22Tempone%2C+Raul%22">Tempone, Raul</searchLink>
– Name: Author
  Label: Contributors
  Group: Au
  Data: Kirby, Robert M.<br />Berzins, Martin<br />Hesthaven, Jan S.
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: Springer
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2014
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: Ecole Polytechnique Fédérale Lausanne (EPFL): Infoscience
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Uncertainty+Quantification%22">Uncertainty Quantification</searchLink><br /><searchLink fieldCode="DE" term="%22PDEs+with+random+data%22">PDEs with random data</searchLink><br /><searchLink fieldCode="DE" term="%22linear+elliptic+equations%22">linear elliptic equations</searchLink><br /><searchLink fieldCode="DE" term="%22Stochastic+Collocation+methods%22">Stochastic Collocation methods</searchLink><br /><searchLink fieldCode="DE" term="%22Sparse+grids+approximation%22">Sparse grids approximation</searchLink><br /><searchLink fieldCode="DE" term="%22Leja+points%22">Leja points</searchLink><br /><searchLink fieldCode="DE" term="%22Clenshaw–Curtis+points%22">Clenshaw–Curtis points</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: In this work we compare different families of nested quadrature points, i.e. the classic Clenshaw-Curtis and various kinds of Leja points, in the context of the quasi-optimal sparse grid approximation of random elliptic PDEs. Numerical evidence suggests that both families perform comparably within such framework. ; CSQI
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: conference object
– Name: Language
  Label: Language
  Group: Lang
  Data: unknown
– Name: ISBN
  Label: ISBN
  Group: ISBN
  Data: 978-3-319-19800-2<br />3-319-19800-9
– Name: ISSN
  Label: ISSN
  Group: ISSN
  Data: 1439-7358
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: https://infoscience.epfl.ch/record/201919/files/2015_Nobile_Tamellini_Tempone_LNCSE_Comparison.pdf; https://infoscience.epfl.ch/record/201919/files/icosahom2014-proceedings.zip; Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014; Lecture Notes in Computational Science and Engineering; 106; International Conference on Spectral and High-Order Methods 2014 (ICOSAHOM'14); #PLACEHOLDER_PARENT_METADATA_VALUE#; https://infoscience.epfl.ch/handle/20.500.14299/107171; WOS:000368440400044
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.1007/978-3-319-19800-2_44
– Name: URL
  Label: Availability
  Group: URL
  Data: https://doi.org/10.1007/978-3-319-19800-2_44<br />https://infoscience.epfl.ch/handle/20.500.14299/107171<br />https://hdl.handle.net/20.500.14299/107171
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsbas.9643F450
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.9643F450
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1007/978-3-319-19800-2_44
    Languages:
      – Text: unknown
    Subjects:
      – SubjectFull: Uncertainty Quantification
        Type: general
      – SubjectFull: PDEs with random data
        Type: general
      – SubjectFull: linear elliptic equations
        Type: general
      – SubjectFull: Stochastic Collocation methods
        Type: general
      – SubjectFull: Sparse grids approximation
        Type: general
      – SubjectFull: Leja points
        Type: general
      – SubjectFull: Clenshaw–Curtis points
        Type: general
    Titles:
      – TitleFull: Comparison of Clenshaw-Curtis and Leja Quasi-Optimal Sparse Grids for the Approximation of Random PDEs
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Nobile, Fabio
      – PersonEntity:
          Name:
            NameFull: Tamellini, Lorenzo
      – PersonEntity:
          Name:
            NameFull: Tempone, Raul
      – PersonEntity:
          Name:
            NameFull: Kirby, Robert M.
      – PersonEntity:
          Name:
            NameFull: Berzins, Martin
      – PersonEntity:
          Name:
            NameFull: Hesthaven, Jan S.
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2014
          Identifiers:
            – Type: isbn-print
              Value: 9783319198002
            – Type: isbn-print
              Value: 3319198009
            – Type: issn-print
              Value: 14397358
            – Type: issn-locals
              Value: edsbas
ResultId 1