Comparison of Clenshaw-Curtis and Leja Quasi-Optimal Sparse Grids for the Approximation of Random PDEs
Saved in:
| Title: | Comparison of Clenshaw-Curtis and Leja Quasi-Optimal Sparse Grids for the Approximation of Random PDEs |
|---|---|
| Authors: | Nobile, Fabio, Tamellini, Lorenzo, Tempone, Raul |
| Contributors: | Kirby, Robert M., Berzins, Martin, Hesthaven, Jan S. |
| Publisher Information: | Springer |
| Publication Year: | 2014 |
| Collection: | Ecole Polytechnique Fédérale Lausanne (EPFL): Infoscience |
| Subject Terms: | Uncertainty Quantification, PDEs with random data, linear elliptic equations, Stochastic Collocation methods, Sparse grids approximation, Leja points, Clenshaw–Curtis points |
| Description: | In this work we compare different families of nested quadrature points, i.e. the classic Clenshaw-Curtis and various kinds of Leja points, in the context of the quasi-optimal sparse grid approximation of random elliptic PDEs. Numerical evidence suggests that both families perform comparably within such framework. ; CSQI |
| Document Type: | conference object |
| Language: | unknown |
| ISBN: | 978-3-319-19800-2 3-319-19800-9 |
| ISSN: | 1439-7358 |
| Relation: | https://infoscience.epfl.ch/record/201919/files/2015_Nobile_Tamellini_Tempone_LNCSE_Comparison.pdf; https://infoscience.epfl.ch/record/201919/files/icosahom2014-proceedings.zip; Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014; Lecture Notes in Computational Science and Engineering; 106; International Conference on Spectral and High-Order Methods 2014 (ICOSAHOM'14); #PLACEHOLDER_PARENT_METADATA_VALUE#; https://infoscience.epfl.ch/handle/20.500.14299/107171; WOS:000368440400044 |
| DOI: | 10.1007/978-3-319-19800-2_44 |
| Availability: | https://doi.org/10.1007/978-3-319-19800-2_44 https://infoscience.epfl.ch/handle/20.500.14299/107171 https://hdl.handle.net/20.500.14299/107171 |
| Accession Number: | edsbas.9643F450 |
| Database: | BASE |
| Abstract: | In this work we compare different families of nested quadrature points, i.e. the classic Clenshaw-Curtis and various kinds of Leja points, in the context of the quasi-optimal sparse grid approximation of random elliptic PDEs. Numerical evidence suggests that both families perform comparably within such framework. ; CSQI |
|---|---|
| ISBN: | 9783319198002 3319198009 |
| ISSN: | 14397358 |
| DOI: | 10.1007/978-3-319-19800-2_44 |
Nájsť tento článok vo Web of Science