The Super-Diffusive Singular Perturbation Problem
Gespeichert in:
| Titel: | The Super-Diffusive Singular Perturbation Problem |
|---|---|
| Autoren: | Edgardo Alvarez, Carlos Lizama |
| Quelle: | Mathematics, Vol 8, Iss 3, p 403 (2020) |
| Verlagsinformationen: | MDPI AG |
| Publikationsjahr: | 2020 |
| Bestand: | Directory of Open Access Journals: DOAJ Articles |
| Schlagwörter: | singular perturbation, fractional partial differential equations, analytic semigroup, super-diffusive processes, Mathematics, QA1-939 |
| Beschreibung: | In this paper we study a class of singularly perturbed defined abstract Cauchy problems. We investigate the singular perturbation problem |
| Publikationsart: | article in journal/newspaper |
| Sprache: | English |
| Relation: | https://www.mdpi.com/2227-7390/8/3/403; https://doaj.org/toc/2227-7390; https://doaj.org/article/f9a548d2fde64e06af4dbda162bfa089 |
| DOI: | 10.3390/math8030403 |
| Verfügbarkeit: | https://doi.org/10.3390/math8030403 https://doaj.org/article/f9a548d2fde64e06af4dbda162bfa089 |
| Dokumentencode: | edsbas.92FD6F20 |
| Datenbank: | BASE |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://doi.org/10.3390/math8030403# Name: EDS - BASE (s4221598) Category: fullText Text: View record from BASE – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Alvarez%20E Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsbas DbLabel: BASE An: edsbas.92FD6F20 RelevancyScore: 905 AccessLevel: 3 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 905.017944335938 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: The Super-Diffusive Singular Perturbation Problem – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Edgardo+Alvarez%22">Edgardo Alvarez</searchLink><br /><searchLink fieldCode="AR" term="%22Carlos+Lizama%22">Carlos Lizama</searchLink> – Name: TitleSource Label: Source Group: Src Data: Mathematics, Vol 8, Iss 3, p 403 (2020) – Name: Publisher Label: Publisher Information Group: PubInfo Data: MDPI AG – Name: DatePubCY Label: Publication Year Group: Date Data: 2020 – Name: Subset Label: Collection Group: HoldingsInfo Data: Directory of Open Access Journals: DOAJ Articles – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22singular+perturbation%22">singular perturbation</searchLink><br /><searchLink fieldCode="DE" term="%22fractional+partial+differential+equations%22">fractional partial differential equations</searchLink><br /><searchLink fieldCode="DE" term="%22analytic+semigroup%22">analytic semigroup</searchLink><br /><searchLink fieldCode="DE" term="%22super-diffusive+processes%22">super-diffusive processes</searchLink><br /><searchLink fieldCode="DE" term="%22Mathematics%22">Mathematics</searchLink><br /><searchLink fieldCode="DE" term="%22QA1-939%22">QA1-939</searchLink> – Name: Abstract Label: Description Group: Ab Data: In this paper we study a class of singularly perturbed defined abstract Cauchy problems. We investigate the singular perturbation problem <semantics> ( P ϵ ) ϵ α D t α u ϵ ( t ) + u ϵ ′ ( t ) = A u ϵ ( t ) , t ∈ [ 0 , T ] </semantics> , <semantics> 1 < α < 2 , ϵ > 0 , </semantics> for the parabolic equation <semantics> ( P ) u 0 ′ ( t ) = A u 0 ( t ) , t ∈ [ 0 , T ] , </semantics> in a Banach space, as the singular parameter goes to zero. Under the assumption that A is the generator of a bounded analytic semigroup and under some regularity conditions we show that problem <semantics> ( P ϵ ) </semantics> has a unique solution <semantics> u ϵ ( t ) </semantics> for each small <semantics> ϵ > 0 . </semantics> Moreover <semantics> u ϵ ( t ) </semantics> converges to <semantics> u 0 ( t ) </semantics> as <semantics> ϵ → 0 + , </semantics> the unique solution of equation <semantics> ( P ) </semantics> . – Name: TypeDocument Label: Document Type Group: TypDoc Data: article in journal/newspaper – Name: Language Label: Language Group: Lang Data: English – Name: NoteTitleSource Label: Relation Group: SrcInfo Data: https://www.mdpi.com/2227-7390/8/3/403; https://doaj.org/toc/2227-7390; https://doaj.org/article/f9a548d2fde64e06af4dbda162bfa089 – Name: DOI Label: DOI Group: ID Data: 10.3390/math8030403 – Name: URL Label: Availability Group: URL Data: https://doi.org/10.3390/math8030403<br />https://doaj.org/article/f9a548d2fde64e06af4dbda162bfa089 – Name: AN Label: Accession Number Group: ID Data: edsbas.92FD6F20 |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.92FD6F20 |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.3390/math8030403 Languages: – Text: English Subjects: – SubjectFull: singular perturbation Type: general – SubjectFull: fractional partial differential equations Type: general – SubjectFull: analytic semigroup Type: general – SubjectFull: super-diffusive processes Type: general – SubjectFull: Mathematics Type: general – SubjectFull: QA1-939 Type: general Titles: – TitleFull: The Super-Diffusive Singular Perturbation Problem Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Edgardo Alvarez – PersonEntity: Name: NameFull: Carlos Lizama IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2020 Identifiers: – Type: issn-locals Value: edsbas – Type: issn-locals Value: edsbas.oa Titles: – TitleFull: Mathematics, Vol 8, Iss 3, p 403 (2020 Type: main |
| ResultId | 1 |
Nájsť tento článok vo Web of Science