The Super-Diffusive Singular Perturbation Problem
Saved in:
| Title: | The Super-Diffusive Singular Perturbation Problem |
|---|---|
| Authors: | Edgardo Alvarez, Carlos Lizama |
| Source: | Mathematics, Vol 8, Iss 3, p 403 (2020) |
| Publisher Information: | MDPI AG |
| Publication Year: | 2020 |
| Collection: | Directory of Open Access Journals: DOAJ Articles |
| Subject Terms: | singular perturbation, fractional partial differential equations, analytic semigroup, super-diffusive processes, Mathematics, QA1-939 |
| Description: | In this paper we study a class of singularly perturbed defined abstract Cauchy problems. We investigate the singular perturbation problem |
| Document Type: | article in journal/newspaper |
| Language: | English |
| Relation: | https://www.mdpi.com/2227-7390/8/3/403; https://doaj.org/toc/2227-7390; https://doaj.org/article/f9a548d2fde64e06af4dbda162bfa089 |
| DOI: | 10.3390/math8030403 |
| Availability: | https://doi.org/10.3390/math8030403 https://doaj.org/article/f9a548d2fde64e06af4dbda162bfa089 |
| Accession Number: | edsbas.92FD6F20 |
| Database: | BASE |
| Abstract: | In this paper we study a class of singularly perturbed defined abstract Cauchy problems. We investigate the singular perturbation problem <semantics> ( P ϵ ) ϵ α D t α u ϵ ( t ) + u ϵ ′ ( t ) = A u ϵ ( t ) , t ∈ [ 0 , T ] </semantics> , <semantics> 1 < α < 2 , ϵ > 0 , </semantics> for the parabolic equation <semantics> ( P ) u 0 ′ ( t ) = A u 0 ( t ) , t ∈ [ 0 , T ] , </semantics> in a Banach space, as the singular parameter goes to zero. Under the assumption that A is the generator of a bounded analytic semigroup and under some regularity conditions we show that problem <semantics> ( P ϵ ) </semantics> has a unique solution <semantics> u ϵ ( t ) </semantics> for each small <semantics> ϵ > 0 . </semantics> Moreover <semantics> u ϵ ( t ) </semantics> converges to <semantics> u 0 ( t ) </semantics> as <semantics> ϵ → 0 + , </semantics> the unique solution of equation <semantics> ( P ) </semantics> . |
|---|---|
| DOI: | 10.3390/math8030403 |
Nájsť tento článok vo Web of Science