Podrobná bibliografie
| Název: |
Evaluación de rendimiento de arquitecturas paralelas y de propósito específico para el aprendizaje por refuerzo en juegos ; Performance evaluation of parallel and specic-purpose architectures for reinforcement learning in games |
| Autoři: |
Guzmán Muñoz, Javier |
| Přispěvatelé: |
Igual Peña, Francisco Daniel, Costero Valero, Luis Mª |
| Rok vydání: |
2021 |
| Sbírka: |
Universidad Complutense de Madrid (UCM): E-Prints Complutense |
| Témata: |
004(043.3), Aprendizaje por refuerzo, Algoritmo PPO, Red neuronal de convoluci´on, Ray RLlib, Entornos Gym, TPU Google Coral, Aceleradores hardware, Reinforcement learning, PPO algorithm, Convolutional neural network, Gym environ- ments, Google Coral TPU, Hardware accelerators, Informática (Informática), 1203.17 Informática |
| Popis: |
Trabajo de Fin de Grado en Doble Grado en Ingeniería Informática - Matemáticas , Facultad de Informática UCM, Departamento de Arquitectura de Computadores y Automática, Curso 2020-21 ; Las aplicaciones de aprendizaje por refuerzo se usan en la actualidad para resolver problemas de todo tipo en campos muy diversos. Sin embargo, una de las principales desventajas que presentan es el elevado coste computacional del entrenamiento de los modelos necesarios. Con este trabajo de fin de grado se pretende mejorar este proceso mediante la paralelización de los algoritmos empleados y el uso de distintas arquitecturas hardware que variarán los tiempos requeridos. Los modelos entrenados pueden aplicarse para obtener la mejor secuencia de acciones que podemos realizar sobre un entorno y mejorar la recompensa obtenida. Este proceso, que se denomina inferencia, aunque tiene menor complejidad computacional, se realiza muchas más veces, por lo que se han desarrollado procesadores de propósito específico para llevar a cabo esta tarea. Por ello, también es conveniente evaluar su rendimiento en estos soportes y compararlos con otras unidades de procesamiento más generales. Tras definir el escenario en el que nos vamos a mover y los recursos necesarios para ello, se proponen una serie de experimentos de los procesos de entrenamiento e inferencia que nos permitirán evaluar el rendimiento en términos del tiempo empleado, de la utilización de los recursos disponibles y del consumo de energía de distintas arquitecturas hardware, viendo cuál es más conveniente usar en cada caso. ; Nowadays, reinforcement learning applications are used to solve all kinds of problems in a wide variety of fields. However, one of their main disadvantages is the high computational cost of training the necessary models. This Bachelor’s thesis aims at improving this process by parallelizing the involved algorithms and by using different hardware architectures, which will differ in the amount of time used. We can run previously trained models to obtain the best ... |
| Druh dokumentu: |
bachelor thesis |
| Popis souboru: |
application/pdf |
| Jazyk: |
Spanish; Castilian |
| Relation: |
https://hdl.handle.net/20.500.14352/10496 |
| Dostupnost: |
https://hdl.handle.net/20.500.14352/10496 |
| Rights: |
Atribución-NoComercial 3.0 España ; https://creativecommons.org/licenses/by-nc/3.0/es/ ; open access |
| Přístupové číslo: |
edsbas.813E1FB3 |
| Databáze: |
BASE |