Quantitative mapping of trace elements in agate using LA-ICP-MS

Uložené v:
Podrobná bibliografia
Názov: Quantitative mapping of trace elements in agate using LA-ICP-MS
Autori: Park, Chan-Soo, Shin, Hyung, Yi, Keewook, Cho, Hana, Kim, Yoonsup
Informácie o vydavateľovi: BioMed Central Ltd.
Rok vydania: 2015
Zbierka: BioMed Central
Predmety: LA-ICP-MS, Quantitative mapping, Trace element distribution, Agate
Popis: Background Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is an optimized technique for the quantitative mapping of trace elements on geological materials. Agate is an aggregate of microcrystalline silica showing a variety of colorful bands due to the species and concentrations of transition metals and is thus an appropriate sample to test the availability, efficiency, and detection limit of LA-ICP-MS trace element mapping. Methods Two fortification agate samples selected for elemental mapping are characterized by the colorful and bluish banding layers, respectively. The colorful agate sample consists mainly of two growth zones varying in color from pale orange-red brown to gray tones, whereas the blue agate sample simply shows alternating blue and white bands. Two different types of mineral inclusions, Fe oxide/hydroxide and hollandite (Ba(Mn 4+ 6 Mn 3+ 2 )O 16 ), were identified in the inner and outer halves of the former sample, respectively. The distribution patterns of eight trace elements in these samples, including Al, Co, Cr, Cu, Fe, Mn, Ni, and Ti, were investigated, using both electron microprobe and LA-ICP-MS. Results Aluminum and Fe are the most abundant trace elements in both agate samples up to 5000 ppm although their concentrations in the colorful agate sample are an order of magnitude higher than those in the blue agate sample. The concentrations of other elements in the agate samples are several parts per million levels. The quantitative maps of the colorful agate sample have shown that Fe was mainly distributed in the inner half, but Al, Cu, and Mn in the outer half. In particular, Fe and Mn were primarily concentrated as small spots. On the other hand, the oscillatory zoning patterns are apparent in the quantitative maps of the blue agate sample, showing a correlative relationship between Al and Ti but an antithetic relationship between Al and Fe. The Al and Fe distribution patterns of the colorful agate sample are reproduced in the Al Kα and Fe Kα X-ray maps, ...
Druh dokumentu: article in journal/newspaper
Jazyk: English
Relation: http://www.jast-journal.com/content/6/1/37
Dostupnosť: http://www.jast-journal.com/content/6/1/37
Rights: Copyright 2015 Park et al.
Prístupové číslo: edsbas.7FD76B28
Databáza: BASE
Popis
Abstrakt:Background Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is an optimized technique for the quantitative mapping of trace elements on geological materials. Agate is an aggregate of microcrystalline silica showing a variety of colorful bands due to the species and concentrations of transition metals and is thus an appropriate sample to test the availability, efficiency, and detection limit of LA-ICP-MS trace element mapping. Methods Two fortification agate samples selected for elemental mapping are characterized by the colorful and bluish banding layers, respectively. The colorful agate sample consists mainly of two growth zones varying in color from pale orange-red brown to gray tones, whereas the blue agate sample simply shows alternating blue and white bands. Two different types of mineral inclusions, Fe oxide/hydroxide and hollandite (Ba(Mn 4+ 6 Mn 3+ 2 )O 16 ), were identified in the inner and outer halves of the former sample, respectively. The distribution patterns of eight trace elements in these samples, including Al, Co, Cr, Cu, Fe, Mn, Ni, and Ti, were investigated, using both electron microprobe and LA-ICP-MS. Results Aluminum and Fe are the most abundant trace elements in both agate samples up to 5000 ppm although their concentrations in the colorful agate sample are an order of magnitude higher than those in the blue agate sample. The concentrations of other elements in the agate samples are several parts per million levels. The quantitative maps of the colorful agate sample have shown that Fe was mainly distributed in the inner half, but Al, Cu, and Mn in the outer half. In particular, Fe and Mn were primarily concentrated as small spots. On the other hand, the oscillatory zoning patterns are apparent in the quantitative maps of the blue agate sample, showing a correlative relationship between Al and Ti but an antithetic relationship between Al and Fe. The Al and Fe distribution patterns of the colorful agate sample are reproduced in the Al Kα and Fe Kα X-ray maps, ...