Quasi-3D harnessing of visible light in emissive III-V on Si microstructures: Application to multiple-quantum-well color conversion layers

Uloženo v:
Podrobná bibliografie
Název: Quasi-3D harnessing of visible light in emissive III-V on Si microstructures: Application to multiple-quantum-well color conversion layers
Autoři: Ndiaye, Amade, Ghazouani, Ahlem, Sommer, Romain, Vermande, Elisa, Di Nardo, Christine, Seassal, Christian, Drouard, Emmanuel, Jany, Christophe, Ben Bakir, Badhise
Přispěvatelé: Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), INL - Ingénierie et conversion de lumière (i-Lum) (INL - I-Lum), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
Zdroj: ISSN: 2773-0123 ; Micro and Nanostructures ; https://cea.hal.science/cea-04776264 ; Micro and Nanostructures, 2024, 185, pp.207721. ⟨10.1016/j.micrna.2023.207721⟩.
Informace o vydavateli: CCSD
Elsevier
Rok vydání: 2024
Sbírka: HAL Lyon 1 (University Claude Bernard Lyon 1)
Témata: Light extraction, Bloch modes, Color conversion, MQW, FDTD, microLED (μLED), [SPI]Engineering Sciences [physics], [SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics
Popis: International audience ; We report on the design, fabrication, and characterization of the first photonic crystal (PhC)based red multiple-quantum-well (MQW) color converters fully optimized for augmented reality (AR) microdisplays through a quasi-3D light harnessing principle. This principle leverages an aluminum (Al) bottom reflector and a silicon dioxide (SiO 2 ) gap to harness the bottom-emitted light, along with copper (Cu) lateral mirrors and a silicon nitride (SiN) phase-matcher for Bloch-mode replication. These structures were designed using 3D-FDTD simulations. As a proofof-principle, we fabricated corresponding devices that exhibit promising characteristics, including record light extraction efficiencies over 40 % for 4 μm pixels and directional emission patterns. Time-resolved photoluminescence (TRPL) analyses, along with a four-wave intensity model developed in this work, indicate that there is still room for improvement. We believe that the guidelines established in this study could pave the way for the use of MQW color converters in the next generation of very bright, high-resolution RGB microdisplays for AR glasses and beyond.
Druh dokumentu: article in journal/newspaper
Jazyk: English
DOI: 10.1016/j.micrna.2023.207721
Dostupnost: https://cea.hal.science/cea-04776264
https://cea.hal.science/cea-04776264v1/document
https://cea.hal.science/cea-04776264v1/file/1-s2.0-S2773012323002182-main.pdf
https://doi.org/10.1016/j.micrna.2023.207721
Rights: http://creativecommons.org/licenses/by-nc-nd/ ; info:eu-repo/semantics/OpenAccess
Přístupové číslo: edsbas.7E91E9EC
Databáze: BASE
Popis
Abstrakt:International audience ; We report on the design, fabrication, and characterization of the first photonic crystal (PhC)based red multiple-quantum-well (MQW) color converters fully optimized for augmented reality (AR) microdisplays through a quasi-3D light harnessing principle. This principle leverages an aluminum (Al) bottom reflector and a silicon dioxide (SiO 2 ) gap to harness the bottom-emitted light, along with copper (Cu) lateral mirrors and a silicon nitride (SiN) phase-matcher for Bloch-mode replication. These structures were designed using 3D-FDTD simulations. As a proofof-principle, we fabricated corresponding devices that exhibit promising characteristics, including record light extraction efficiencies over 40 % for 4 μm pixels and directional emission patterns. Time-resolved photoluminescence (TRPL) analyses, along with a four-wave intensity model developed in this work, indicate that there is still room for improvement. We believe that the guidelines established in this study could pave the way for the use of MQW color converters in the next generation of very bright, high-resolution RGB microdisplays for AR glasses and beyond.
DOI:10.1016/j.micrna.2023.207721