Quasi-3D harnessing of visible light in emissive III-V on Si microstructures: Application to multiple-quantum-well color conversion layers
Uloženo v:
| Název: | Quasi-3D harnessing of visible light in emissive III-V on Si microstructures: Application to multiple-quantum-well color conversion layers |
|---|---|
| Autoři: | Ndiaye, Amade, Ghazouani, Ahlem, Sommer, Romain, Vermande, Elisa, Di Nardo, Christine, Seassal, Christian, Drouard, Emmanuel, Jany, Christophe, Ben Bakir, Badhise |
| Přispěvatelé: | Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), INL - Ingénierie et conversion de lumière (i-Lum) (INL - I-Lum), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS) |
| Zdroj: | ISSN: 2773-0123 ; Micro and Nanostructures ; https://cea.hal.science/cea-04776264 ; Micro and Nanostructures, 2024, 185, pp.207721. ⟨10.1016/j.micrna.2023.207721⟩. |
| Informace o vydavateli: | CCSD Elsevier |
| Rok vydání: | 2024 |
| Sbírka: | HAL Lyon 1 (University Claude Bernard Lyon 1) |
| Témata: | Light extraction, Bloch modes, Color conversion, MQW, FDTD, microLED (μLED), [SPI]Engineering Sciences [physics], [SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics |
| Popis: | International audience ; We report on the design, fabrication, and characterization of the first photonic crystal (PhC)based red multiple-quantum-well (MQW) color converters fully optimized for augmented reality (AR) microdisplays through a quasi-3D light harnessing principle. This principle leverages an aluminum (Al) bottom reflector and a silicon dioxide (SiO 2 ) gap to harness the bottom-emitted light, along with copper (Cu) lateral mirrors and a silicon nitride (SiN) phase-matcher for Bloch-mode replication. These structures were designed using 3D-FDTD simulations. As a proofof-principle, we fabricated corresponding devices that exhibit promising characteristics, including record light extraction efficiencies over 40 % for 4 μm pixels and directional emission patterns. Time-resolved photoluminescence (TRPL) analyses, along with a four-wave intensity model developed in this work, indicate that there is still room for improvement. We believe that the guidelines established in this study could pave the way for the use of MQW color converters in the next generation of very bright, high-resolution RGB microdisplays for AR glasses and beyond. |
| Druh dokumentu: | article in journal/newspaper |
| Jazyk: | English |
| DOI: | 10.1016/j.micrna.2023.207721 |
| Dostupnost: | https://cea.hal.science/cea-04776264 https://cea.hal.science/cea-04776264v1/document https://cea.hal.science/cea-04776264v1/file/1-s2.0-S2773012323002182-main.pdf https://doi.org/10.1016/j.micrna.2023.207721 |
| Rights: | http://creativecommons.org/licenses/by-nc-nd/ ; info:eu-repo/semantics/OpenAccess |
| Přístupové číslo: | edsbas.7E91E9EC |
| Databáze: | BASE |
| Abstrakt: | International audience ; We report on the design, fabrication, and characterization of the first photonic crystal (PhC)based red multiple-quantum-well (MQW) color converters fully optimized for augmented reality (AR) microdisplays through a quasi-3D light harnessing principle. This principle leverages an aluminum (Al) bottom reflector and a silicon dioxide (SiO 2 ) gap to harness the bottom-emitted light, along with copper (Cu) lateral mirrors and a silicon nitride (SiN) phase-matcher for Bloch-mode replication. These structures were designed using 3D-FDTD simulations. As a proofof-principle, we fabricated corresponding devices that exhibit promising characteristics, including record light extraction efficiencies over 40 % for 4 μm pixels and directional emission patterns. Time-resolved photoluminescence (TRPL) analyses, along with a four-wave intensity model developed in this work, indicate that there is still room for improvement. We believe that the guidelines established in this study could pave the way for the use of MQW color converters in the next generation of very bright, high-resolution RGB microdisplays for AR glasses and beyond. |
|---|---|
| DOI: | 10.1016/j.micrna.2023.207721 |
Nájsť tento článok vo Web of Science