Accessing and using data cubes: spatial overlay, visualization and modeling – Python tutorial

Uloženo v:
Podrobná bibliografie
Název: Accessing and using data cubes: spatial overlay, visualization and modeling – Python tutorial
Autoři: Leandro Parente
Přispěvatelé: Kompetenzzentrum für nicht-textuelle Materialien
Informace o vydavateli: OpenGeoHub Foundation
Rok vydání: 2022
Témata: Computer science, Open Data, Open science, Studienbereich Informatik, Ingenieurwissenschaften
Popis: (en)In this training session you will learn about the main concepts / aspects related to raster data cubes, cloud-optimized geotiff (COG) and SpatioTemporal Asset Catalog (STAC), working with a practical example in Python. Using the eumap library and the training samples provided in the hackathon, you will perform a complete workflow for spatial predictive mapping, including:  Spacetime overlay (through STAC + COG),  Train a Random Forest classifier (with hyper-parameter optimization),  produce a classification output (also through STAC + COG). All the steps were executed in Google Colab and all the data (points and rasters) accessed directly from the cloud (http://stac.ecodatacube.eu).
Druh dokumentu: course material
moving image (video)
Jazyk: English
Relation: https://av.tib.eu/media/59408
Dostupnost: https://av.tib.eu/media/59408
Rights: https://creativecommons.org/licenses/by/3.0/de
Přístupové číslo: edsbas.7321970C
Databáze: BASE
Popis
Abstrakt:(en)In this training session you will learn about the main concepts / aspects related to raster data cubes, cloud-optimized geotiff (COG) and SpatioTemporal Asset Catalog (STAC), working with a practical example in Python. Using the eumap library and the training samples provided in the hackathon, you will perform a complete workflow for spatial predictive mapping, including:  Spacetime overlay (through STAC + COG),  Train a Random Forest classifier (with hyper-parameter optimization),  produce a classification output (also through STAC + COG). All the steps were executed in Google Colab and all the data (points and rasters) accessed directly from the cloud (http://stac.ecodatacube.eu).