Accessing and using data cubes: spatial overlay, visualization and modeling – Python tutorial
Uloženo v:
| Název: | Accessing and using data cubes: spatial overlay, visualization and modeling – Python tutorial |
|---|---|
| Autoři: | Leandro Parente |
| Přispěvatelé: | Kompetenzzentrum für nicht-textuelle Materialien |
| Informace o vydavateli: | OpenGeoHub Foundation |
| Rok vydání: | 2022 |
| Témata: | Computer science, Open Data, Open science, Studienbereich Informatik, Ingenieurwissenschaften |
| Popis: | (en)In this training session you will learn about the main concepts / aspects related to raster data cubes, cloud-optimized geotiff (COG) and SpatioTemporal Asset Catalog (STAC), working with a practical example in Python. Using the eumap library and the training samples provided in the hackathon, you will perform a complete workflow for spatial predictive mapping, including: Spacetime overlay (through STAC + COG), Train a Random Forest classifier (with hyper-parameter optimization), produce a classification output (also through STAC + COG). All the steps were executed in Google Colab and all the data (points and rasters) accessed directly from the cloud (http://stac.ecodatacube.eu). |
| Druh dokumentu: | course material moving image (video) |
| Jazyk: | English |
| Relation: | https://av.tib.eu/media/59408 |
| Dostupnost: | https://av.tib.eu/media/59408 |
| Rights: | https://creativecommons.org/licenses/by/3.0/de |
| Přístupové číslo: | edsbas.7321970C |
| Databáze: | BASE |
| Abstrakt: | (en)In this training session you will learn about the main concepts / aspects related to raster data cubes, cloud-optimized geotiff (COG) and SpatioTemporal Asset Catalog (STAC), working with a practical example in Python. Using the eumap library and the training samples provided in the hackathon, you will perform a complete workflow for spatial predictive mapping, including: Spacetime overlay (through STAC + COG), Train a Random Forest classifier (with hyper-parameter optimization), produce a classification output (also through STAC + COG). All the steps were executed in Google Colab and all the data (points and rasters) accessed directly from the cloud (http://stac.ecodatacube.eu). |
|---|
Nájsť tento článok vo Web of Science