Real‐Time and High‐Resolution Monitoring of Neuronal Electrical Activity and pH Variations Based on the Co‐Integration of Nanoelectrodes and Chem‐FinFETs

Gespeichert in:
Bibliographische Detailangaben
Titel: Real‐Time and High‐Resolution Monitoring of Neuronal Electrical Activity and pH Variations Based on the Co‐Integration of Nanoelectrodes and Chem‐FinFETs
Autoren: Bettamin, Luca, Mathieu, Fabrice, Marty, Florent, H, Blatche, Marie Charline, Gonzalez-Dunia, Daniel, Suberbielle, Elsa, Larrieu, Guilhem
Weitere Verfasser: Équipe Matériaux et Procédés pour la Nanoélectronique (LAAS-MPN), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse Capitole (UT Capitole), Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Institut National des Sciences Appliquées (INSA)-Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Université Toulouse - Jean Jaurès (UT2J), Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Université Toulouse III - Paul Sabatier (UT3), Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Université Toulouse Capitole (UT Capitole), Communauté d'universités et établissements de Toulouse (Comue de Toulouse), Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université Toulouse III - Paul Sabatier (UT3), Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), European Project
Quelle: ISSN: 1613-6810.
Verlagsinformationen: CCSD
Wiley-VCH Verlag
Publikationsjahr: 2024
Bestand: Université Toulouse 2 - Jean Jaurès: HAL
Schlagwörter: 3D nanostructures, neurons, nano device, electrophysiology, bioelectronics, MESH: Hydrogen-Ion Concentration, MESH: Neurons, MESH: Animals, MESH: Rats, MESH: Electrodes, MESH: Amyloid beta-Peptides, MESH: Cells, Cultured, [SPI]Engineering Sciences [physics], [SDV]Life Sciences [q-bio]
Beschreibung: International audience ; Developing new approaches amenable to the measurement of neuronal physiology in real-time is a very active field of investigation, as it will offer improved methods to assess the impact of diverse insults on neuronal homeostasis. Here, the development of an in vitro bio platform is reported which can record the electrical activity of cultured primary rat cortical neurons with extreme sensitivity, while simultaneously tracking the localized changes in the pH of the culture medium. This bio platform features passive vertical nanoprobes with ultra-high signal resolution (several mV amplitude ranges) and Chem-FinFETs (pH sensitivity of sub-0.1 pH units), covering an area as little as a neuronal soma. These multi-sensing units are arranged in an array to probe both chemically and electrically an equivalent surface of ≈ 0.5 mm2. A homemade setup is also developed which allows recording of multiplexed data in real-time (10 ps range) from the active chem-sensors and passive electrodes and which is used to operate the platform. Finally, a proof-of-concept is presented for a neuro-relevant application, by investigating the effect on neuronal activity of Amyloid beta oligomers, the main toxic peptide in Alzheimer's Disease, which reveals that exposure to amyloid beta oligomers modify the amplitude, but not the frequency, of neuronal firing, without any detectable changes in pH values along this process.
Publikationsart: article in journal/newspaper
Sprache: English
Relation: info:eu-repo/semantics/altIdentifier/pmid/38552225; PUBMED: 38552225
DOI: 10.1002/smll.202309055
Verfügbarkeit: https://laas.hal.science/hal-04639879
https://laas.hal.science/hal-04639879v1/document
https://laas.hal.science/hal-04639879v1/file/24%20Small%20-%202024%20-%20Bettamin%20-%20Real%E2%80%90Time%20and%20High%E2%80%90Resolution%20Monitoring%20of%20Neuronal%20Electrical%20Activity%20and%20pH%20Variations%20Based.pdf
https://doi.org/10.1002/smll.202309055
Rights: http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
Dokumentencode: edsbas.65EC4F04
Datenbank: BASE
Beschreibung
Abstract:International audience ; Developing new approaches amenable to the measurement of neuronal physiology in real-time is a very active field of investigation, as it will offer improved methods to assess the impact of diverse insults on neuronal homeostasis. Here, the development of an in vitro bio platform is reported which can record the electrical activity of cultured primary rat cortical neurons with extreme sensitivity, while simultaneously tracking the localized changes in the pH of the culture medium. This bio platform features passive vertical nanoprobes with ultra-high signal resolution (several mV amplitude ranges) and Chem-FinFETs (pH sensitivity of sub-0.1 pH units), covering an area as little as a neuronal soma. These multi-sensing units are arranged in an array to probe both chemically and electrically an equivalent surface of ≈ 0.5 mm2. A homemade setup is also developed which allows recording of multiplexed data in real-time (10 ps range) from the active chem-sensors and passive electrodes and which is used to operate the platform. Finally, a proof-of-concept is presented for a neuro-relevant application, by investigating the effect on neuronal activity of Amyloid beta oligomers, the main toxic peptide in Alzheimer's Disease, which reveals that exposure to amyloid beta oligomers modify the amplitude, but not the frequency, of neuronal firing, without any detectable changes in pH values along this process.
DOI:10.1002/smll.202309055