Restoration of hydroxyapatite particle thickness and crystalline orientation does not lead to recovery of tissue-scale mechanical properties in regenerating rat calvarial bone defects
Gespeichert in:
| Titel: | Restoration of hydroxyapatite particle thickness and crystalline orientation does not lead to recovery of tissue-scale mechanical properties in regenerating rat calvarial bone defects |
|---|---|
| Autoren: | Zaouali, Ameni, Gloaguen, David, Le Bourhis, Éric, Dubos, Pierre-Antoine, Moya, Marie-José, Schwartzkopf, Matthias, Snow, Tim, Schneider, Konrad, Chang, Baobao, Jordana, Fabienne, Tessier, Solène, Tournier, Pierre, Paré, Arnaud, Weiss, Pierre, Geoffroy, Valérie, Girault, Baptiste |
| Weitere Verfasser: | Institut de Recherche en Génie Civil et Mécanique (GeM), Centre National de la Recherche Scientifique (CNRS)-NANTES UNIVERSITÉ - École Centrale de Nantes (Nantes Univ - ECN), Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université - Institut Universitaire de Technologie Saint-Nazaire (Nantes Univ - IUT Saint-Nazaire), Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - Ecole Polytechnique de l'Université de Nantes (Nantes Univ - EPUN), Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Université de Poitiers = University of Poitiers (UP), Surface, Interfaces et MAtériaux sous Contrainte Institut Pprime (SIMAC), Département Physique et Mécanique des Matériaux Institut Pprime (Département PMM), Institut Pprime UPR 3346 (PPrime Poitiers ), Université de Poitiers = University of Poitiers (UP)-École Nationale Supérieure de Mécanique et d’Aérotechnique Poitiers (ISAE-ENSMA)-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers = University of Poitiers (UP)-École Nationale Supérieure de Mécanique et d’Aérotechnique Poitiers (ISAE-ENSMA)-Centre National de la Recherche Scientifique (CNRS)-Institut Pprime UPR 3346 (PPrime Poitiers ), Université de Poitiers = University of Poitiers (UP)-École Nationale Supérieure de Mécanique et d’Aérotechnique Poitiers (ISAE-ENSMA)-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers = University of Poitiers (UP)-École Nationale Supérieure de Mécanique et d’Aérotechnique Poitiers (ISAE-ENSMA)-Centre National de la Recherche Scientifique (CNRS), École nationale vétérinaire, agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS), Deutsches Elektronen-Synchrotron Hamburg (DESY), DIAMOND Light source, Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Leibniz Association, Regenerative Medicine and Skeleton (RMeS), École nationale vétérinaire, agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Nantes Université - UFR Odontologie (Nantes Univ – UFR Odonto), Nantes Université - pôle Santé, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Santé, CHU Trousseau Tours, Centre Hospitalier Régional Universitaire de Tours (CHRU Tours), European Project: 730872,H2020-INFRAIA-2016-2017,H2020-INFRAIA-2016-1,CALIPSOplus(2017) |
| Quelle: | ISSN: 1751-6161. |
| Verlagsinformationen: | CCSD Elsevier |
| Publikationsjahr: | 2025 |
| Bestand: | Université de Poitiers: Publications de nos chercheurs.ses (HAL) |
| Schlagwörter: | Nanoindentation, Bone graft, Strain, Synchrotron X-ray diffraction, Bone regeneration, MESH: Animals, MESH: Biomechanical Phenomena, MESH: Mechanical Phenomena, MESH: Rats, MESH: Skull* / diagnostic imaging, MESH: Skull* / drug effects, MESH: Skull* / injuries, MESH: Skull* / pathology, MESH: Tensile Strength, MESH: X-Ray Microtomography, MESH: Bone Regeneration, MESH: Durapatite* / chemistry, MESH: Male, MESH: Materials Testing, [PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph], [PHYS]Physics [physics] |
| Beschreibung: | International audience ; Various cellular activities regulate bone healing, causing structural changes and evolving mechanical characteristics during the regeneration process. This pilot study aimed to correlate the time- and space-resolved mechanical behavior of regenerating and related biological processes. While the mechanical properties of bone are known to be based on a nanostructure organization, this study intends to highlight the evolution of the strain distribution induced by the reconstruction process, which is mainly driven by the mineral part (i.e., hydroxyapatite) of the bone architecture. Multiscale mechanical (tensile and nanoindentation tests) and biological (X-ray microtomography measurements and histological observations) characterization methods were applied to 3 mm rat cranial defects, one of the most reproducible animal models used to assess bone regeneration, filled with bone grafts, the gold standard for bone repair. The size and crystallographic orientation of the hydroxyapatite particles as well as their lattice (elastic) strain distribution under tensile loading were investigated through in situ synchrotron wide-angle and small-angle X-ray scattering measurements at various healing stages. Analyses were completed to quantify the elastic properties at the tissue-scale via nanoindentation measurements. The resulting mappings of lattice strain, mean particle thickness and crystallographic orientations revealed how tissue evolves during bone repair. At the early stages of the regeneration process, the microstructural changes consisted of a restored hydroxyapatite platelet shape and crystallographic orientation. At later stages, the hydroxyapatite crystallographic orientation reached that of native bone, and the mechanical function of the tissue in the defect zone was restored at the mineral particle scale. Nevertheless, even for the longest regeneration duration (20 weeks), mechanical properties at the tissue-scale remained ineffective, highlighting the importance of multiscale ... |
| Publikationsart: | article in journal/newspaper |
| Sprache: | English |
| Relation: | info:eu-repo/semantics/altIdentifier/pmid/40215905; info:eu-repo/grantAgreement//730872/EU/Convenient Access to Light Sources Open to Innovation, Science and to the World/CALIPSOplus; PUBMED: 40215905; WOS: 001469244300001 |
| DOI: | 10.1016/j.jmbbm.2025.106998 |
| Verfügbarkeit: | https://isae-ensma.hal.science/hal-05036842 https://isae-ensma.hal.science/hal-05036842v1/document https://isae-ensma.hal.science/hal-05036842v1/file/JMBM_HAL.pdf https://doi.org/10.1016/j.jmbbm.2025.106998 |
| Rights: | http://creativecommons.org/licenses/by-nc-nd/ ; info:eu-repo/semantics/OpenAccess |
| Dokumentencode: | edsbas.5E9D369B |
| Datenbank: | BASE |
| Abstract: | International audience ; Various cellular activities regulate bone healing, causing structural changes and evolving mechanical characteristics during the regeneration process. This pilot study aimed to correlate the time- and space-resolved mechanical behavior of regenerating and related biological processes. While the mechanical properties of bone are known to be based on a nanostructure organization, this study intends to highlight the evolution of the strain distribution induced by the reconstruction process, which is mainly driven by the mineral part (i.e., hydroxyapatite) of the bone architecture. Multiscale mechanical (tensile and nanoindentation tests) and biological (X-ray microtomography measurements and histological observations) characterization methods were applied to 3 mm rat cranial defects, one of the most reproducible animal models used to assess bone regeneration, filled with bone grafts, the gold standard for bone repair. The size and crystallographic orientation of the hydroxyapatite particles as well as their lattice (elastic) strain distribution under tensile loading were investigated through in situ synchrotron wide-angle and small-angle X-ray scattering measurements at various healing stages. Analyses were completed to quantify the elastic properties at the tissue-scale via nanoindentation measurements. The resulting mappings of lattice strain, mean particle thickness and crystallographic orientations revealed how tissue evolves during bone repair. At the early stages of the regeneration process, the microstructural changes consisted of a restored hydroxyapatite platelet shape and crystallographic orientation. At later stages, the hydroxyapatite crystallographic orientation reached that of native bone, and the mechanical function of the tissue in the defect zone was restored at the mineral particle scale. Nevertheless, even for the longest regeneration duration (20 weeks), mechanical properties at the tissue-scale remained ineffective, highlighting the importance of multiscale ... |
|---|---|
| DOI: | 10.1016/j.jmbbm.2025.106998 |
Nájsť tento článok vo Web of Science