Optimizing parameters in swarm intelligence using reinforcement learning: An application of Proximal Policy Optimization to the iSOMA algorithm

Gespeichert in:
Bibliographische Detailangaben
Titel: Optimizing parameters in swarm intelligence using reinforcement learning: An application of Proximal Policy Optimization to the iSOMA algorithm
Autoren: Klein, Lukáš, Zelinka, Ivan, Seidl, David
Verlagsinformationen: Elsevier
Publikationsjahr: 2024
Bestand: DSpace VŠB-TUO (Vysoká škola báňská - Technická univerzita Ostrava / Technical University of Ostrava)
Schlagwörter: self-organizing migrating algorithm, optimization algorithm, swarm intelligence, numerical optimization, reinforcement learning
Publikationsart: article in journal/newspaper
Dateibeschreibung: text/plain; image/jpeg; application/pdf; downloadable_files_count: 1
Sprache: English
Relation: Swarm and Evolutionary Computation; https://doi.org/10.1016/j.swevo.2024.101487; Swarm and Evolutionary Computation. 2024, vol. 85, art. no. 101487.; https://hdl.handle.net/10084/155264; 001174331700001
DOI: 10.1016/j.swevo.2024.101487
Verfügbarkeit: https://hdl.handle.net/10084/155264
https://doi.org/10.1016/j.swevo.2024.101487
Rights: © 2024 The Authors. Published by Elsevier B.V. ; http://creativecommons.org/licenses/by-nc-nd/4.0/ ; openAccess
Dokumentencode: edsbas.5E77DE7E
Datenbank: BASE
Beschreibung
DOI:10.1016/j.swevo.2024.101487