APPLICATION OF TARGET DETECTION ALGORITHM BASED ON DEEP LEARNING IN FARMLAND PEST RECOGNITION
Uloženo v:
| Název: | APPLICATION OF TARGET DETECTION ALGORITHM BASED ON DEEP LEARNING IN FARMLAND PEST RECOGNITION |
|---|---|
| Autoři: | Shi Wenxiu and Li Nianqiang |
| Informace o vydavateli: | Zenodo |
| Rok vydání: | 2020 |
| Sbírka: | Zenodo |
| Témata: | Object detection algorithm, Faster R-CNN, Inception network |
| Popis: | Combining with deep learning technology, this paper proposes a method of farmland pest recognition based on target detection algorithm, which realizes the automatic recognition of farmland pest and improves the recognition accuracy. First of all, a labeled farm pest database is established; then uses Faster R-CNN algorithm, the model uses the improved Inception network for testing; finally, the proposed target detection model is trained and tested on the farm pest database, with the average precision up to 90.54%. |
| Druh dokumentu: | article in journal/newspaper |
| Jazyk: | unknown |
| Relation: | https://zenodo.org/records/3889762; oai:zenodo.org:3889762; https://doi.org/10.5281/zenodo.3889762 |
| DOI: | 10.5281/zenodo.3889762 |
| Dostupnost: | https://doi.org/10.5281/zenodo.3889762 https://zenodo.org/records/3889762 |
| Rights: | Creative Commons Attribution 4.0 International ; cc-by-4.0 ; https://creativecommons.org/licenses/by/4.0/legalcode |
| Přístupové číslo: | edsbas.5D6C4C81 |
| Databáze: | BASE |
| Abstrakt: | Combining with deep learning technology, this paper proposes a method of farmland pest recognition based on target detection algorithm, which realizes the automatic recognition of farmland pest and improves the recognition accuracy. First of all, a labeled farm pest database is established; then uses Faster R-CNN algorithm, the model uses the improved Inception network for testing; finally, the proposed target detection model is trained and tested on the farm pest database, with the average precision up to 90.54%. |
|---|---|
| DOI: | 10.5281/zenodo.3889762 |
Nájsť tento článok vo Web of Science