APPLICATION OF TARGET DETECTION ALGORITHM BASED ON DEEP LEARNING IN FARMLAND PEST RECOGNITION

Uloženo v:
Podrobná bibliografie
Název: APPLICATION OF TARGET DETECTION ALGORITHM BASED ON DEEP LEARNING IN FARMLAND PEST RECOGNITION
Autoři: Shi Wenxiu and Li Nianqiang
Informace o vydavateli: Zenodo
Rok vydání: 2020
Sbírka: Zenodo
Témata: Object detection algorithm, Faster R-CNN, Inception network
Popis: Combining with deep learning technology, this paper proposes a method of farmland pest recognition based on target detection algorithm, which realizes the automatic recognition of farmland pest and improves the recognition accuracy. First of all, a labeled farm pest database is established; then uses Faster R-CNN algorithm, the model uses the improved Inception network for testing; finally, the proposed target detection model is trained and tested on the farm pest database, with the average precision up to 90.54%.
Druh dokumentu: article in journal/newspaper
Jazyk: unknown
Relation: https://zenodo.org/records/3889762; oai:zenodo.org:3889762; https://doi.org/10.5281/zenodo.3889762
DOI: 10.5281/zenodo.3889762
Dostupnost: https://doi.org/10.5281/zenodo.3889762
https://zenodo.org/records/3889762
Rights: Creative Commons Attribution 4.0 International ; cc-by-4.0 ; https://creativecommons.org/licenses/by/4.0/legalcode
Přístupové číslo: edsbas.5D6C4C81
Databáze: BASE
Popis
Abstrakt:Combining with deep learning technology, this paper proposes a method of farmland pest recognition based on target detection algorithm, which realizes the automatic recognition of farmland pest and improves the recognition accuracy. First of all, a labeled farm pest database is established; then uses Faster R-CNN algorithm, the model uses the improved Inception network for testing; finally, the proposed target detection model is trained and tested on the farm pest database, with the average precision up to 90.54%.
DOI:10.5281/zenodo.3889762