Error-correcting pairs: a new approach to code-based cryptography

Gespeichert in:
Bibliographische Detailangaben
Titel: Error-correcting pairs: a new approach to code-based cryptography
Autoren: Márquez-Corbella, Irene, Pellikaan, Ruud
Weitere Verfasser: Laboratoire d'informatique de l'École polytechnique Palaiseau (LIX), École polytechnique (X), Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National de la Recherche Scientifique (CNRS), Geometry, arithmetic, algorithms, codes and encryption (GRACE), Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National de la Recherche Scientifique (CNRS)-Centre Inria de l'Institut Polytechnique de Paris, Centre Inria de Saclay, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre Inria de Saclay, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Department of mathematics and computing science Eindhoven, Eindhoven University of Technology Eindhoven (TU/e)
Quelle: 20th Conference on Applications of Computer Algebra (ACA 2014)
https://hal.science/hal-01088433
20th Conference on Applications of Computer Algebra (ACA 2014), Jul 2014, New York, United States
Verlagsinformationen: CCSD
Publikationsjahr: 2014
Bestand: École Polytechnique, Université Paris-Saclay: HAL
Schlagwörter: McEliece cryptosystem, error-correcting pairs, Code-based cryptography, [MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG], [MATH.MATH-IT]Mathematics [math]/Information Theory [math.IT], [INFO.INFO-IT]Computer Science [cs]/Information Theory [cs.IT]
Geographisches Schlagwort: New York, United States
Beschreibung: International audience ; McEliece proposed the first public-key cryptosystem based on linear error-correcting codes. A code with an efficient bounded distance decoding algorithm is chosen as secret key. It is assumed that the chosen code looks like a random code. The known efficient bounded distance decoding algorithms of the families of codes proposed for code-based cryptography, like Reed-Solomon codes, Goppa codes, alternant codes or algebraic geometry codes, can be described in terms of error-correcting pairs (ECP). That means that, the McEliece cryptosystem is not only based on the intractability of bounded distance decoding but also on the problem of retrieving an error-correcting pair from the public code. In this article we propose the class of codes with a t-ECP whose error-correcting pair that is not easily reconstructed from of a given generator matrix.
Publikationsart: conference object
Sprache: English
Verfügbarkeit: https://hal.science/hal-01088433
https://hal.science/hal-01088433v1/document
https://hal.science/hal-01088433v1/file/MP-ACA2014.pdf
Rights: info:eu-repo/semantics/OpenAccess
Dokumentencode: edsbas.564FA6DB
Datenbank: BASE
Beschreibung
Abstract:International audience ; McEliece proposed the first public-key cryptosystem based on linear error-correcting codes. A code with an efficient bounded distance decoding algorithm is chosen as secret key. It is assumed that the chosen code looks like a random code. The known efficient bounded distance decoding algorithms of the families of codes proposed for code-based cryptography, like Reed-Solomon codes, Goppa codes, alternant codes or algebraic geometry codes, can be described in terms of error-correcting pairs (ECP). That means that, the McEliece cryptosystem is not only based on the intractability of bounded distance decoding but also on the problem of retrieving an error-correcting pair from the public code. In this article we propose the class of codes with a t-ECP whose error-correcting pair that is not easily reconstructed from of a given generator matrix.