Error-correcting pairs: a new approach to code-based cryptography
Uloženo v:
| Název: | Error-correcting pairs: a new approach to code-based cryptography |
|---|---|
| Autoři: | Márquez-Corbella, Irene, Pellikaan, Ruud |
| Přispěvatelé: | Laboratoire d'informatique de l'École polytechnique Palaiseau (LIX), École polytechnique (X), Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National de la Recherche Scientifique (CNRS), Geometry, arithmetic, algorithms, codes and encryption (GRACE), Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National de la Recherche Scientifique (CNRS)-Centre Inria de l'Institut Polytechnique de Paris, Centre Inria de Saclay, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre Inria de Saclay, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Department of mathematics and computing science Eindhoven, Eindhoven University of Technology Eindhoven (TU/e) |
| Zdroj: | 20th Conference on Applications of Computer Algebra (ACA 2014) https://hal.science/hal-01088433 20th Conference on Applications of Computer Algebra (ACA 2014), Jul 2014, New York, United States |
| Informace o vydavateli: | CCSD |
| Rok vydání: | 2014 |
| Sbírka: | École Polytechnique, Université Paris-Saclay: HAL |
| Témata: | McEliece cryptosystem, error-correcting pairs, Code-based cryptography, [MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG], [MATH.MATH-IT]Mathematics [math]/Information Theory [math.IT], [INFO.INFO-IT]Computer Science [cs]/Information Theory [cs.IT] |
| Geografické téma: | New York, United States |
| Popis: | International audience ; McEliece proposed the first public-key cryptosystem based on linear error-correcting codes. A code with an efficient bounded distance decoding algorithm is chosen as secret key. It is assumed that the chosen code looks like a random code. The known efficient bounded distance decoding algorithms of the families of codes proposed for code-based cryptography, like Reed-Solomon codes, Goppa codes, alternant codes or algebraic geometry codes, can be described in terms of error-correcting pairs (ECP). That means that, the McEliece cryptosystem is not only based on the intractability of bounded distance decoding but also on the problem of retrieving an error-correcting pair from the public code. In this article we propose the class of codes with a t-ECP whose error-correcting pair that is not easily reconstructed from of a given generator matrix. |
| Druh dokumentu: | conference object |
| Jazyk: | English |
| Dostupnost: | https://hal.science/hal-01088433 https://hal.science/hal-01088433v1/document https://hal.science/hal-01088433v1/file/MP-ACA2014.pdf |
| Rights: | info:eu-repo/semantics/OpenAccess |
| Přístupové číslo: | edsbas.564FA6DB |
| Databáze: | BASE |
| Abstrakt: | International audience ; McEliece proposed the first public-key cryptosystem based on linear error-correcting codes. A code with an efficient bounded distance decoding algorithm is chosen as secret key. It is assumed that the chosen code looks like a random code. The known efficient bounded distance decoding algorithms of the families of codes proposed for code-based cryptography, like Reed-Solomon codes, Goppa codes, alternant codes or algebraic geometry codes, can be described in terms of error-correcting pairs (ECP). That means that, the McEliece cryptosystem is not only based on the intractability of bounded distance decoding but also on the problem of retrieving an error-correcting pair from the public code. In this article we propose the class of codes with a t-ECP whose error-correcting pair that is not easily reconstructed from of a given generator matrix. |
|---|
Nájsť tento článok vo Web of Science