Stochastic processes, analysis, examples (Python tutorial)

Gespeichert in:
Bibliographische Detailangaben
Titel: Stochastic processes, analysis, examples (Python tutorial)
Autoren: Markus Abel
Weitere Verfasser: Kompetenzzentrum für nicht-textuelle Materialien
Verlagsinformationen: OpenGeoHub Foundation
Publikationsjahr: 2022
Schlagwörter: Statistical test, Computer science, Open Data, Open science, Studienbereich Informatik, Ingenieurwissenschaften
Beschreibung: (en)In this contribution we will systematically walk to stochastic processes starting from random variables in 1,2, and more dimensions. We show tests and ways to create statistically relevant test data based on requirements or assumptions on the models to be tested. Emphasis is on testing strategies using standard python libraries.
Publikationsart: course material
moving image (video)
Sprache: English
Relation: https://av.tib.eu/media/59416
Verfügbarkeit: https://av.tib.eu/media/59416
Rights: https://creativecommons.org/licenses/by/3.0/de
Dokumentencode: edsbas.2EC22F01
Datenbank: BASE
Beschreibung
Abstract:(en)In this contribution we will systematically walk to stochastic processes starting from random variables in 1,2, and more dimensions. We show tests and ways to create statistically relevant test data based on requirements or assumptions on the models to be tested. Emphasis is on testing strategies using standard python libraries.