QUBIC V: Cryogenic system design and performance

Gespeichert in:
Bibliographische Detailangaben
Titel: QUBIC V: Cryogenic system design and performance
Autoren: Masi, S., Battistelli, E. S., de Bernardis, P., Chapron, C., Columbro, F., Coppolecchia, A., D'Alessandro, G., De Petris, M., Grandsire, L, Hamilton, J.-Ch., Lamagna, L., Marnieros, S., May, A., Mele, L., Mennella, A., O'Sullivan, C., Paiella, A., Piacentini, F., Piat, M., Piccirillo, L., Presta, G., Schillaci, A., Tartari, A., Thermeau, J.-P., Torchinsky, S. A., Voisin, F., Zannoni, M., Ade, P., Alberro, J. G., Almela, A., Amico, G., Arnaldi, L. H., Auguste, D., Aumont, J., Azzoni, S., Banfi, S., Baù, A., Bélier, B., Bennett, D., Bergé, L., Bernard, J.-Ph., Bersanelli, M., Bigot-Sazy, M.-A., Bonaparte, J., Bonis, J., Bunn, E., Burke, D., Buzi, D., Cavaliere, F., Chanial, P., Charlassier, R., Cobos Cerutti, A. C., De Gasperis, G., De Leo, M., Dheilly, S., Duca, C., Dumoulin, L., Etchegoyen, A., Fasciszewski, A., Ferreyro, L. P., Fracchia, D., Franceschet, C., Gamboa Lerena, M. M., Ganga, K. M., García, B., García Redondo, M. E., Gaspard, M., Gayer, D., Gervasi, M., Giard, M., Gilles, V., Giraud-Heraud, Y., Gómez Berisso, M., González, M., Gradziel, M., Hampel, M. R., Harari, D., Henrot-Versillé, S., Incardona, F., Jules, E., Kaplan, J., Kristukat, C., Loucatos, S., Louis, T., Maffei, B., Marty, W., Mattei, A., McCulloch, M., Melo, D., Montier, L., Mousset, L., Mundo, L. M., Murphy, J. A., Murphy, J. D., Nati, F., Olivieri, E., Oriol, C., Pajot, F., Passerini, A., Pastoriza, H., Pelosi, A., Perbost, C., Perciballi, M., Pezzotta, F., Pisano, G., Platino, M., Polenta, G., Prêle, D., Puddu, R., Rambaud, D., Rasztocky, E., Ringegni, P., Romero, G. E., Salum, J. M., Scóccola, C. G., Scully, S., Spinelli, S., Stankowiak, G., Stolpovskiy, M., Supanitsky, A. D., Timbie, P., Tomasi, M., Tucker, C., Tucker, G., Viganò, D., Vittorio, N., Wicek, F., Wright, M., Zullo, A., QUBIC Collaboration
Quelle: Journal of Cosmology and Astroparticle Physics, 2022(4), Art. No. 038, (2022-04)
Verlagsinformationen: IOP Publishing
Publikationsjahr: 2022
Bestand: Caltech Authors (California Institute of Technology)
Schlagwörter: CMBR experiments, CMBR polarisation, CMBR detectors, Cryogenic Systems, Astronomy and Astrophysics
Beschreibung: Current experiments aimed at measuring the polarization of the Cosmic Microwave Background (CMB) use cryogenic detector arrays with cold optical systems to boost their mapping speed. For this reason, large volume cryogenic systems with large optical windows, working continuously for years, are needed. The cryogenic system of the QUBIC (Q & U Bolometric Interferometer for Cosmology) experiment solves a combination of simultaneous requirements: very large optical throughput (∼40 cm²sr), large volume (∼1 m³) and large mass (∼165 kg) of the cryogenic instrument. Here we describe its design, fabrication, experimental optimization and validation in the Technological Demonstrator configuration. The QUBIC cryogenic system is based on a large volume cryostat that uses two pulse-tube refrigerators to cool the instrument to ∼3 K. The instrument includes the cryogenic polarization modulator, the corrugated feedhorn array, and the lower temperature stages: a ⁴He evaporator cooling the interferometer beam combiner to ∼1 K and a ³He evaporator cooling the focal-plane detector arrays to ∼0.3 K. The cryogenic system has been tested and validated for more than 6 months of continuous operation. The detector arrays have reached a stable operating temperature of 0.33 K, while the polarization modulator has operated at a ∼10 K base temperature. The system has been tilted to cover the boresight elevation range 20°-90° without significant temperature variations. The instrument is now ready for deployment to the high Argentinean Andes. ; © 2022 IOP Publishing Ltd and Sissa Medialab. Received 25 November 2020; Accepted 18 May 2021; Published 21 April 2022. QUBIC is funded by the following agencies. France: ANR (Agence Nationale de la Recherche) 2012 and 2014, DIM-ACAV (Domaine d'Interet Majeur-Astronomie et Conditions d'Apparition de la Vie), CNRS/IN2P3 (Centre national de la recherche scientifique/Institut national de physique nucléaire et de physique des particules), CNRS/INSU (Centre national de la recherche scientifique/Institut ...
Publikationsart: article in journal/newspaper
Sprache: unknown
Relation: https://arxiv.org/abs/2008.10659; https://authors.library.caltech.edu/communities/caltechauthors/; eprintid:114481
DOI: 10.1088/1475-7516/2022/04/038
Verfügbarkeit: https://doi.org/10.1088/1475-7516/2022/04/038
Rights: info:eu-repo/semantics/openAccess ; Other
Dokumentencode: edsbas.2DB614E2
Datenbank: BASE
Beschreibung
Abstract:Current experiments aimed at measuring the polarization of the Cosmic Microwave Background (CMB) use cryogenic detector arrays with cold optical systems to boost their mapping speed. For this reason, large volume cryogenic systems with large optical windows, working continuously for years, are needed. The cryogenic system of the QUBIC (Q & U Bolometric Interferometer for Cosmology) experiment solves a combination of simultaneous requirements: very large optical throughput (∼40 cm²sr), large volume (∼1 m³) and large mass (∼165 kg) of the cryogenic instrument. Here we describe its design, fabrication, experimental optimization and validation in the Technological Demonstrator configuration. The QUBIC cryogenic system is based on a large volume cryostat that uses two pulse-tube refrigerators to cool the instrument to ∼3 K. The instrument includes the cryogenic polarization modulator, the corrugated feedhorn array, and the lower temperature stages: a ⁴He evaporator cooling the interferometer beam combiner to ∼1 K and a ³He evaporator cooling the focal-plane detector arrays to ∼0.3 K. The cryogenic system has been tested and validated for more than 6 months of continuous operation. The detector arrays have reached a stable operating temperature of 0.33 K, while the polarization modulator has operated at a ∼10 K base temperature. The system has been tilted to cover the boresight elevation range 20°-90° without significant temperature variations. The instrument is now ready for deployment to the high Argentinean Andes. ; © 2022 IOP Publishing Ltd and Sissa Medialab. Received 25 November 2020; Accepted 18 May 2021; Published 21 April 2022. QUBIC is funded by the following agencies. France: ANR (Agence Nationale de la Recherche) 2012 and 2014, DIM-ACAV (Domaine d'Interet Majeur-Astronomie et Conditions d'Apparition de la Vie), CNRS/IN2P3 (Centre national de la recherche scientifique/Institut national de physique nucléaire et de physique des particules), CNRS/INSU (Centre national de la recherche scientifique/Institut ...
DOI:10.1088/1475-7516/2022/04/038