Sea level change : a philosophical approach

Uloženo v:
Podrobná bibliografie
Název: Sea level change : a philosophical approach
Autoři: Leinfelder, Reinhold, Seyfried, Hartmut
Rok vydání: 1993
Sbírka: OPUS - Publication Server of the University of Stuttgart
Témata: Meeresspiegelschwankung, Treibhauseffekt, Erwärmung , sea level change, global temperature increase, glacial episodes, greenhouse episodes, climatic buffers, extinction, carbon cycle
Time: 550
Popis: The present Cenozoic era is an lsquoicehousersquo episode characterized by a low sea level. Since the beginning of the industrial revolution, the human race has been emitting greenhouse gases, increasing the global atmospheric temperature, and causing a rise in sea level. If emissions continue to increase at the present rate, average global temperatures may rise by 1.5°C by the year 2050, accompanied by a rise of about 30 cm in sea level. However, the prediction of future climatic conditions and sea level is hampered by the difficulty in modelling the interactions between the lithosphere, kryosphere, biosphere and atmosphere; in addition, the buffering capacity of our planet is still poorly understood. As scientists cannot offer unambiguous answers to simple questions, sorcerer's apprentices fill in the gaps, presenting plans to save planet without inconveniencing us. The geological record can help us to learn about the regulation mechanisms of our planet, many of which are connected with or expressed as sea level changes. Global changes in sea level are either tectono-eustatic or glacioeustatic. Plate tectonic processes strongly control sea levels and climate in the long term. There is a strong feed-back mechanism between sea level and climate; both can influence and determine each other. Although high sea levels are a powerful climatic buffer, falling sea levels accelerate climatic accentuation, the growth of the polar ice caps and will hence amplify the drop in sea level. Important sources of fossil greenhouse gases are botanic CO2 production, CO2 released by volcanic activity, and water vapour. The latter is particularly important when the surface area of the sea increases during a rise in sea level (lsquomaritime greenhouse effectrsquo). A lsquovolcanogenic greenhouse effectrsquo (release of volcanogenic CO2) is possibly not equally important, as intense volcanic activity may take place both during icehouse episodes as well as during greenhouse episodes. The hydrosphere, land vegetation and carbonate ...
Druh dokumentu: article in journal/newspaper
Popis souboru: application/pdf
Jazyk: English
Relation: 275192636
DOI: 10.18419/opus-3758
Dostupnost: https://doi.org/10.18419/opus-3758
http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-33660
http://elib.uni-stuttgart.de/handle/11682/3775
Rights: info:eu-repo/semantics/openAccess
Přístupové číslo: edsbas.1C28CDDD
Databáze: BASE
Popis
Abstrakt:The present Cenozoic era is an lsquoicehousersquo episode characterized by a low sea level. Since the beginning of the industrial revolution, the human race has been emitting greenhouse gases, increasing the global atmospheric temperature, and causing a rise in sea level. If emissions continue to increase at the present rate, average global temperatures may rise by 1.5°C by the year 2050, accompanied by a rise of about 30 cm in sea level. However, the prediction of future climatic conditions and sea level is hampered by the difficulty in modelling the interactions between the lithosphere, kryosphere, biosphere and atmosphere; in addition, the buffering capacity of our planet is still poorly understood. As scientists cannot offer unambiguous answers to simple questions, sorcerer's apprentices fill in the gaps, presenting plans to save planet without inconveniencing us. The geological record can help us to learn about the regulation mechanisms of our planet, many of which are connected with or expressed as sea level changes. Global changes in sea level are either tectono-eustatic or glacioeustatic. Plate tectonic processes strongly control sea levels and climate in the long term. There is a strong feed-back mechanism between sea level and climate; both can influence and determine each other. Although high sea levels are a powerful climatic buffer, falling sea levels accelerate climatic accentuation, the growth of the polar ice caps and will hence amplify the drop in sea level. Important sources of fossil greenhouse gases are botanic CO2 production, CO2 released by volcanic activity, and water vapour. The latter is particularly important when the surface area of the sea increases during a rise in sea level (lsquomaritime greenhouse effectrsquo). A lsquovolcanogenic greenhouse effectrsquo (release of volcanogenic CO2) is possibly not equally important, as intense volcanic activity may take place both during icehouse episodes as well as during greenhouse episodes. The hydrosphere, land vegetation and carbonate ...
DOI:10.18419/opus-3758