Triality, Exceptional Lie Algebras and Deligne Dimension Formulas: Triality, exceptional Lie algebras and Deligne dimension formulas.

Uloženo v:
Podrobná bibliografie
Název: Triality, Exceptional Lie Algebras and Deligne Dimension Formulas: Triality, exceptional Lie algebras and Deligne dimension formulas.
Autoři: Laurent Manivel, Joseph M. Landsberg
Zdroj: Advances in Mathematics. 171:59-85
Publication Status: Preprint
Informace o vydavateli: Elsevier BV, 2002.
Rok vydání: 2002
Témata: Mathematics - Differential Geometry, Mathematics(all), Exceptional (super)algebras, exceptional Lie algebras, 01 natural sciences, Mathematics - Algebraic Geometry, Differential Geometry (math.DG), Deligne dimension formulas, triality, FOS: Mathematics, Freudenthal magic square, Representation Theory (math.RT), 0101 mathematics, Algebraic Geometry (math.AG), Simple, semisimple, reductive (super)algebras, Mathematics - Representation Theory
Popis: We give a computer free proof of the Deligne, Cohen and deMan formulas for the dimensions of the irreducible $g$-modules appearing in the tensor powers of $g$, where $g$ ranges over the exceptional complex simple Lie algebras. We give additional dimension formulas for the exceptional series, as well as uniform dimension formulas for other representations distinguished by Freudenthal along the rows of his magic chart. Our proofs use the triality model of the magic square which we review and present a simplified proof of its validity. We conclude with some general remarks about obtaining "series" of Lie algebras in the spirit of Deligne and Vogel.
17 pages
Druh dokumentu: Article
Popis souboru: application/xml
Jazyk: English
ISSN: 0001-8708
DOI: 10.1006/aima.2002.2071
DOI: 10.48550/arxiv.math/0107032
Přístupová URL adresa: http://arxiv.org/abs/math/0107032
https://zbmath.org/1888317
https://doi.org/10.1006/aima.2002.2071
https://www.arxiv-vanity.com/papers/math/0107032/
https://www.sciencedirect.com/science/article/abs/pii/S0001870802920712
https://arxiv.org/pdf/math/0107032
https://dialnet.unirioja.es/servlet/articulo?codigo=314671
https://www.infona.pl/resource/bwmeta1.element.elsevier-5a8fda2f-9b32-3eb8-aa42-90f1ce58bba9
https://www.sciencedirect.com/science/article/pii/S0001870802920712
Rights: Elsevier Non-Commercial
arXiv Non-Exclusive Distribution
Přístupové číslo: edsair.doi.dedup.....fc28783f54ff092f1ba84189fbd5764e
Databáze: OpenAIRE
Popis
Abstrakt:We give a computer free proof of the Deligne, Cohen and deMan formulas for the dimensions of the irreducible $g$-modules appearing in the tensor powers of $g$, where $g$ ranges over the exceptional complex simple Lie algebras. We give additional dimension formulas for the exceptional series, as well as uniform dimension formulas for other representations distinguished by Freudenthal along the rows of his magic chart. Our proofs use the triality model of the magic square which we review and present a simplified proof of its validity. We conclude with some general remarks about obtaining "series" of Lie algebras in the spirit of Deligne and Vogel.<br />17 pages
ISSN:00018708
DOI:10.1006/aima.2002.2071