Stabilization of an unstable reaction-diffusion PDE with input delay despite state and input quantization

Uloženo v:
Podrobná bibliografie
Název: Stabilization of an unstable reaction-diffusion PDE with input delay despite state and input quantization
Autoři: Koudohode Florent(http://users.isc.tuc.gr/~fkoudohode), Μπεκιαρης-Λυμπερης Νικολαος(http://users.isc.tuc.gr/~nlimperis), Bekiaris-Liberis Nikolaos(http://users.isc.tuc.gr/~nlimperis)
Zdroj: 2025 American Control Conference (ACC)
Publication Status: Preprint
Informace o vydavateli: IEEE, 2025.
Rok vydání: 2025
Témata: Mathematics - Analysis of PDEs, Backstepping, Quantization, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Mathematics, Systems and Control (eess.SY), Electrical Engineering and Systems Science - Systems and Control, Reaction-diffusion PDE, Analysis of PDEs (math.AP)
Popis: We solve the global asymptotic stability problem of an unstable reaction-diffusion Partial Differential Equation (PDE) subject to input delay and state quantization developing a switched predictor-feedback law. To deal with the input delay, we reformulate the problem as an actuated transport PDE coupled with the original reaction-diffusion PDE. Then, we design a quantized predictor-based feedback mechanism that employs a dynamic switching strategy to adjust the quantization range and error over time. The stability of the closed-loop system is proven properly combining backstepping with a small-gain approach and input-to-state stability techniques, for deriving estimates on solutions, despite the quantization effect and the system's instability. We also extend this result to the input quantization case.
Accepted for presentation at 2025 American Control Conference (ACC), DENVER, Colorado, USA
Druh dokumentu: Article
Conference object
Popis souboru: application/pdf
DOI: 10.23919/acc63710.2025.11108079
DOI: 10.48550/arxiv.2501.15924
Přístupová URL adresa: http://arxiv.org/abs/2501.15924
http://purl.tuc.gr/dl/dias/732B793A-39DE-4326-B071-34FBD8635A3F
Rights: STM Policy #29
CC BY NC ND
Přístupové číslo: edsair.doi.dedup.....eb245b126c90e92ea058fee79f5520f6
Databáze: OpenAIRE
Popis
Abstrakt:We solve the global asymptotic stability problem of an unstable reaction-diffusion Partial Differential Equation (PDE) subject to input delay and state quantization developing a switched predictor-feedback law. To deal with the input delay, we reformulate the problem as an actuated transport PDE coupled with the original reaction-diffusion PDE. Then, we design a quantized predictor-based feedback mechanism that employs a dynamic switching strategy to adjust the quantization range and error over time. The stability of the closed-loop system is proven properly combining backstepping with a small-gain approach and input-to-state stability techniques, for deriving estimates on solutions, despite the quantization effect and the system's instability. We also extend this result to the input quantization case.<br />Accepted for presentation at 2025 American Control Conference (ACC), DENVER, Colorado, USA
DOI:10.23919/acc63710.2025.11108079