Elliptic islands and zero measure escaping orbit in a class of outer billiards

Uložené v:
Podrobná bibliografia
Názov: Elliptic islands and zero measure escaping orbit in a class of outer billiards
Autori: Li, Zaicun
Zdroj: Discrete and Continuous Dynamical Systems. 47:144-189
Publication Status: Preprint
Informácie o vydavateľovi: American Institute of Mathematical Sciences (AIMS), 2026.
Rok vydania: 2026
Predmety: FOS: Mathematics, Dynamical Systems (math.DS), Dynamical Systems
Popis: We study outer billiard systems around a class of circular sectors. For semi-discs, we prove the existence of elliptic islands occupying a positive proportion of the plane. Combined with known results, this shows the coexistence of stability and diffusion for this system. On the other hand, we show that there exists a countable family of circular sectors for which the outer billiard system has zero measure of escaping orbits.
Druh dokumentu: Article
ISSN: 1553-5231
1078-0947
DOI: 10.3934/dcds.2025115
DOI: 10.48550/arxiv.2506.18433
Prístupová URL adresa: http://arxiv.org/abs/2506.18433
Rights: CC BY
Prístupové číslo: edsair.doi.dedup.....e9704853c491001e499b8f59d7efb4c1
Databáza: OpenAIRE
Popis
Abstrakt:We study outer billiard systems around a class of circular sectors. For semi-discs, we prove the existence of elliptic islands occupying a positive proportion of the plane. Combined with known results, this shows the coexistence of stability and diffusion for this system. On the other hand, we show that there exists a countable family of circular sectors for which the outer billiard system has zero measure of escaping orbits.
ISSN:15535231
10780947
DOI:10.3934/dcds.2025115