Polygenic risk prediction: why and when out-of-sample prediction R2 can exceed SNP-based heritability: why and when out-of-sample prediction R2 can exceed SNP-based heritability

Uložené v:
Podrobná bibliografia
Názov: Polygenic risk prediction: why and when out-of-sample prediction R2 can exceed SNP-based heritability: why and when out-of-sample prediction R2 can exceed SNP-based heritability
Autori: Xiaotong Wang, Alicia Walker, Joana A. Revez, Guiyan Ni, Mark J. Adams, Andrew M. McIntosh, Naomi R. Wray, Stephan Ripke, Manuel Mattheisen, Maciej Trzaskowski, Enda M. Byrne, Abdel Abdellaoui, Esben Agerbo, Tracy M. Air, Till F.M. Andlauer, Silviu-Alin Bacanu, Marie Bækvad-Hansen, Aartjan T.F. Beekman, Tim B. Bigdeli, Elisabeth B. Binder, Julien Bryois, Henriette N. Buttenschøn, Jonas Bybjerg-Grauholm, Na Cai, Enrique Castelao, Jane Hvarregaard Christensen, Toni-Kim Clarke, Jonathan R.I. Coleman, Lucía Colodro-Conde, Baptiste Couvy-Duchesne, Nick Craddock, Gregory E. Crawford, Gail Davies, Franziska Degenhardt, Eske M. Derks, Nese Direk, Conor V. Dolan, Erin C. Dunn, Thalia C. Eley, Valentina Escott-Price, Farnush Farhadi Hassan Kiadeh, Hilary K. Finucane, Jerome C. Foo, Andreas J. Forstner, Josef Frank, Héléna A. Gaspar, Michael Gill, Fernando S. Goes, Scott D. Gordon, Jakob Grove, Lynsey S. Hall, Christine Søholm Hansen, Thomas F. Hansen, Stefan Herms, Ian B. Hickie, Per Hoffmann, Georg Homuth, Carsten Horn, Jouke-Jan Hottenga, David M. Hougaard, David M. Howard, Marcus Ising, Rick Jansen, Ian Jones, Lisa A. Jones, Eric Jorgenson, James A. Knowles, Isaac S. Kohane, Julia Kraft, Warren W. Kretzschmar, Zoltán Kutalik, Yihan Li, Penelope A. Lind, Donald J. MacIntyre, Dean F. MacKinnon, Robert M. Maier, Wolfgang Maier, Jonathan Marchini, Hamdi Mbarek, Patrick McGrath, Peter McGuffin, Sarah E. Medland, Divya Mehta, Christel M. Middeldorp, Evelin Mihailov, Yuri Milaneschi, Lili Milani, Francis M. Mondimore, Grant W. Montgomery, Sara Mostafavi, Niamh Mullins, Matthias Nauck, Bernard Ng, Michel G. Nivard, Dale R. Nyholt, Paul F. O'Reilly, Hogni Oskarsson, Michael J. Owen, Jodie N. Painter, Carsten Bøcker Pedersen, Marianne Giørtz Pedersen, Roseann E. Peterson, Wouter J. Peyrot, Giorgio Pistis, Danielle Posthuma, Jorge A. Quiroz, Per Qvist, John P. Rice, Brien P. Riley, Margarita Rivera, Saira Saeed Mirza, Robert Schoevers, Eva C. Schulte, Ling Shen, Jianxin Shi, Stanley I. Shyn, Engilbert Sigurdsson, Grant C.B. Sinnamon, Johannes H. Smit, Daniel J. Smith, Hreinn Stefansson, Stacy Steinberg, Fabian Streit, Jana Strohmaier, Katherine E. Tansey, Henning Teismann, Alexander Teumer, Wesley Thompson, Pippa A. Thomson, Thorgeir E. Thorgeirsson, Matthew Traylor, Jens Treutlein, Vassily Trubetskoy, André G. Uitterlinden, Daniel Umbricht, Sandra Van der Auwera, Albert M. van Hemert, Alexander Viktorin, Peter M. Visscher, Yunpeng Wang, Bradley T. Webb, Shantel Marie Weinsheimer, Jürgen Wellmann, Gonneke Willemsen, Stephanie H. Witt, Yang Wu, Hualin S. Xi, Jian Yang, Futao Zhang, Volker Arolt, Bernhard T. Baune, Klaus Berger, Dorret I. Boomsma, Sven Cichon, Udo Dannlowski, E.J.C. de Geus, J. Raymond DePaulo, Enrico Domenici, Katharina Domschke, Tõnu Esko, Hans J. Grabe, Steven P. Hamilton, Caroline Hayward, Andrew C. Heath, Kenneth S. Kendler, Stefan Kloiber, Glyn Lewis, Qingqin S. Li, Susanne Lucae, Pamela A.F. Madden, Patrik K. Magnusson, Nicholas G. Martin, Andres Metspalu, Ole Mors, Preben Bo Mortensen, Bertram Müller-Myhsok, Merete Nordentoft, Markus M. Nöthen, Michael C. O'Donovan, Sara A. Paciga, Nancy L. Pedersen, Brenda W.J.H. Penninx, Roy H. Perlis, David J. Porteous, James B. Potash, Martin Preisig, Marcella Rietschel, Catherine Schaefer, Thomas G. Schulze, Jordan W. Smoller, Kari Stefansson, Henning Tiemeier, Rudolf Uher, Henry Völzke, Myrna M. Weissman, Thomas Werge, Cathryn M. Lewis, Douglas F. Levinson, Gerome Breen, Anders D. Børglum, Patrick F. Sullivan
Zdroj: Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium 2023, 'Polygenic risk prediction : why and when out-of-sample prediction R2 can exceed SNP-based heritability', American journal of human genetics, vol. 110, no. 7, pp. 1207-1215. https://doi.org/10.1016/j.ajhg.2023.06.006
Wang, X, Walker, A, Revez, J A, Ni, G, Adams, M J, McIntosh, A M & Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium 2023, 'Polygenic risk prediction : why and when out-of-sample prediction R 2 can exceed SNP-based heritability', American Journal of Human Genetics, vol. 110, no. 7, pp. 1207-1215. https://doi.org/10.1016/j.ajhg.2023.06.006
Informácie o vydavateľovi: Elsevier BV, 2023.
Rok vydania: 2023
Predmety: meta-analysis, polygenic risk prediction, SNP-based heritability, Multifactorial Inheritance, Phenotype, out-of-sample prediction R, Humans, Computer Simulation, Polymorphism, Single Nucleotide/genetics, Multifactorial Inheritance/genetics, Polymorphism, Single Nucleotide, Genome-Wide Association Study
Popis: In polygenic score (PGS) analysis, the coefficient of determination (R2) is a key statistic to evaluate efficacy. R2 is the proportion of phenotypic variance explained by the PGS, calculated in a cohort that is independent of the genome-wide association study (GWAS) that provided estimates of allelic effect sizes. The SNP-based heritability (hSNP2, the proportion of total phenotypic variances attributable to all common SNPs) is the theoretical upper limit of the out-of-sample prediction R2. However, in real data analyses R2 has been reported to exceed hSNP2, which occurs in parallel with the observation that hSNP2 estimates tend to decline as the number of cohorts being meta-analyzed increases. Here, we quantify why and when these observations are expected. Using theory and simulation, we show that if heterogeneities in cohort-specific hSNP2 exist, or if genetic correlations between cohorts are less than one, hSNP2 estimates can decrease as the number of cohorts being meta-analyzed increases. We derive conditions when the out-of-sample prediction R2 will be greater than hSNP2 and show the validity of our derivations with real data from a binary trait (major depression) and a continuous trait (educational attainment). Our research calls for a better approach to integrating information from multiple cohorts to address issues of between-cohort heterogeneity.
Druh dokumentu: Article
Jazyk: English
ISSN: 0002-9297
DOI: 10.1016/j.ajhg.2023.06.006
Prístupová URL adresa: https://pubmed.ncbi.nlm.nih.gov/37379836
https://research.vumc.nl/en/publications/32175ad7-0c42-4648-83ca-28051afb84e6
https://pure.amsterdamumc.nl/en/publications/7fcb7e14-8335-4630-a61e-ccdbf5480147
https://doi.org/10.1016/j.ajhg.2023.06.006
https://pure.au.dk/portal/en/publications/3554a23a-4eac-4827-898b-689748b1876f
https://doi.org/10.1016/j.ajhg.2023.06.006
http://www.scopus.com/inward/record.url?scp=85164270154&partnerID=8YFLogxK
https://pmc.ncbi.nlm.nih.gov/articles/PMC10357496/pdf/main.pdf
Rights: Elsevier Non-Commercial
Prístupové číslo: edsair.doi.dedup.....e37f4d6ec19bb57eb19822a700f05a81
Databáza: OpenAIRE
Popis
Abstrakt:In polygenic score (PGS) analysis, the coefficient of determination (R2) is a key statistic to evaluate efficacy. R2 is the proportion of phenotypic variance explained by the PGS, calculated in a cohort that is independent of the genome-wide association study (GWAS) that provided estimates of allelic effect sizes. The SNP-based heritability (hSNP2, the proportion of total phenotypic variances attributable to all common SNPs) is the theoretical upper limit of the out-of-sample prediction R2. However, in real data analyses R2 has been reported to exceed hSNP2, which occurs in parallel with the observation that hSNP2 estimates tend to decline as the number of cohorts being meta-analyzed increases. Here, we quantify why and when these observations are expected. Using theory and simulation, we show that if heterogeneities in cohort-specific hSNP2 exist, or if genetic correlations between cohorts are less than one, hSNP2 estimates can decrease as the number of cohorts being meta-analyzed increases. We derive conditions when the out-of-sample prediction R2 will be greater than hSNP2 and show the validity of our derivations with real data from a binary trait (major depression) and a continuous trait (educational attainment). Our research calls for a better approach to integrating information from multiple cohorts to address issues of between-cohort heterogeneity.
ISSN:00029297
DOI:10.1016/j.ajhg.2023.06.006