Computer-Aided Glaucoma Diagnosis Using Stochastic Watershed Transformation on Single Fundus Images

Uloženo v:
Podrobná bibliografie
Název: Computer-Aided Glaucoma Diagnosis Using Stochastic Watershed Transformation on Single Fundus Images
Autoři: Díaz-Pinto, Andrés Yesid, Morales, Sandra, Naranjo Ornedo, Valeriana, Navea, Amparo
Přispěvatelé: Escuela Técnica Superior de Ingeniería de Telecomunicación, Departamento de Matemática Aplicada, Departamento de Comunicaciones, Escuela Técnica Superior de Ingeniería Aeroespacial y Diseño Industrial, Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano, Nvidia, Generalitat Valenciana, European Commission, Repositorio Institucional de la Universitat Politècnica de València Riunet, Producción Científica UCH 2019, UCH. Departamento de Medicina y Cirugía
Zdroj: RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia
Universitat Politècnica de València (UPV)
instname
CEU Repositorio Institucional
Fundación Universitaria San Pablo CEU (FUSPCEU)
Journal of Medical Imaging and Health Informatics
Informace o vydavateli: American Scientific Publishers, 2019.
Rok vydání: 2019
Témata: Ojos - Enfermedades - Diagnóstico - Modelos matemáticos, Fundus Images, Glaucoma - Diagnosis - Mathematical models, Stochastic Watershed, TEORIA DE LA SEÑAL Y COMUNICACIONES, Glaucoma - Diagnóstico - Modelos matemáticos, Glaucoma, Eye - Diseases - Diagnosis - Mathematical models, CDR, ISNT rule, 3. Good health
Popis: Glaucoma is a chronic eye disease and one of the major causes of permanent blindness. Since it does not show initial symptoms, early diagnosis is important to limit its progression. This paper presents an automatic optic nerve characterization algorithm for glaucoma diagnosis based only on retinal fundus images. For optic cup segmentation, we used a new method based on the stochastic watershed transformation applied on the YIQ colour space to extract clinical indicators such as the Cup/Disc ratio, the area Cup/Disc ratio and the ISNT rule. Afterwards, an assessment between normal and glaucomatous fundus images is performed. The proposed algorithm was evaluated on 6 different (private and public) databases containing 723 images (377 normal and 346 glaucomatous images) which achieved a specificity and sensitivity of 0.674 and 0.675, respectively. Moreover, an F-score of 0.770 was obtained when evaluating this method on the publicly available database Drishti-GS1. A comparison of the proposed work with other state-of-the-art methods demonstrates the robustness of the proposed algorithm; because it was tested using images from different databases with high variability, which is a common issue in this area. Additional comparisons with existing works for cup segmentation, that use the publicly available database Drishti-GS1, are also presented in this paper.
Druh dokumentu: Article
Popis souboru: application/pdf
Jazyk: English
ISSN: 2156-7018
DOI: 10.1166/jmihi.2019.2721
DOI: 10.13039/501100000780
DOI: 10.13039/501100003359
Přístupová URL adresa: https://repositorioinstitucional.ceu.es/bitstream/10637/11659/1/Computer-aided_Diaz_JMIHI_2019.pdf
https://riunet.upv.es/handle/10251/126176
http://doi.org/10.1166/jmihi.2019.2721
https://riunet.upv.es/handle/10251/126176
https://www.ingentaconnect.com/content/asp/jmihi/2019/00000009/00000006/art00001
https://repositorioinstitucional.ceu.es/handle/10637/11659
https://dblp.uni-trier.de/db/journals/jmihi/jmihi9.html#Diaz-PintoMNN19
https://repositorioinstitucional.ceu.es/bitstream/10637/11659/1/Computer-aided_Diaz_JMIHI_2019.pdf
https://hdl.handle.net/10251/126176
https://doi.org/10.1166/jmihi.2019.2721
Rights: CC BY NC ND
URL: http://rightsstatements.org/vocab/InC/1.0/
Přístupové číslo: edsair.doi.dedup.....e2109ccc0d5f576c9032cd2b4765b060
Databáze: OpenAIRE
Popis
Abstrakt:Glaucoma is a chronic eye disease and one of the major causes of permanent blindness. Since it does not show initial symptoms, early diagnosis is important to limit its progression. This paper presents an automatic optic nerve characterization algorithm for glaucoma diagnosis based only on retinal fundus images. For optic cup segmentation, we used a new method based on the stochastic watershed transformation applied on the YIQ colour space to extract clinical indicators such as the Cup/Disc ratio, the area Cup/Disc ratio and the ISNT rule. Afterwards, an assessment between normal and glaucomatous fundus images is performed. The proposed algorithm was evaluated on 6 different (private and public) databases containing 723 images (377 normal and 346 glaucomatous images) which achieved a specificity and sensitivity of 0.674 and 0.675, respectively. Moreover, an F-score of 0.770 was obtained when evaluating this method on the publicly available database Drishti-GS1. A comparison of the proposed work with other state-of-the-art methods demonstrates the robustness of the proposed algorithm; because it was tested using images from different databases with high variability, which is a common issue in this area. Additional comparisons with existing works for cup segmentation, that use the publicly available database Drishti-GS1, are also presented in this paper.
ISSN:21567018
DOI:10.1166/jmihi.2019.2721